
Monotone
A distributed version control system

Graydon Hoare and others

This manual is for the “monotone” distributed version control system. This edition docu-
ments version 0.42.
Copyright c© 2003, 2004 Graydon Hoare
Copyright c© 2004, 2005, 2006 Nathaniel Smith
Copyright c© 2005, 2008 Derek Scherger
Copyright c© 2005, 2006 Daniel Carosone
Copyright c© 2006 Jeronimo Pellegrini
Copyright c© 2006 Alex Queiroz
Copyright c© 2006, 2007 William Uther
Copyright c© 2006, 2007, 2008 Thomas Keller
Copyright c© 2007, 2008 Stephen Leake

This manual is made available under the GNU GPL version 2.0 or greater. See the accom-
panying file COPYING for details.

i

Table of Contents

1 Concepts . 1
1.1 Versions of files . 2
1.2 Versions of trees . 4
1.3 Historical records . 6
1.4 Certificates . 8
1.5 Storage and workflow . 10
1.6 Forks and merges . 13
1.7 Branches . 15

1.7.1 Branch Names . 16

2 Tutorial . 19
2.1 Issues . 19

2.1.1 Standard Options . 19
2.1.2 Revision Selectors . 19

2.2 The Fictional Project . 20
2.3 Creating a Database . 21
2.4 Generating Keys . 22
2.5 Starting a New Project . 24
2.6 Adding Files . 25
2.7 Committing Work . 28
2.8 Basic Network Service . 30
2.9 Synchronising Databases . 31
2.10 Making Changes . 32
2.11 Dealing with a Fork . 35
2.12 Branching and Merging . 39
2.13 Network Service Revisited . 41

3 Advanced Uses . 45
3.1 Other Transports . 46
3.2 Selectors . 47
3.3 Restrictions . 50
3.4 Scripting . 52
3.5 Inodeprints . 52
3.6 Merge Conflicts . 53

3.6.1 Conflict Types . 53
3.7 Workspace Collisions . 58
3.8 Quality Assurance . 60
3.9 Vars . 61
3.10 Reserved Files . 62
3.11 Reserved Certs . 64
3.12 Naming Conventions . 66
3.13 File Attributes . 67

ii monotone documentation

3.14 Merging . 68
3.15 Migrating and Dumping . 69
3.16 Importing from CVS . 70
3.17 Using packets . 71

4 CVS Phrasebook . 75

5 Command Reference . 79
5.1 Tree . 80

5.1.1 Conflicts . 83
5.2 Workspace . 85
5.3 Network . 91
5.4 Informative . 93
5.5 Key and Cert Trust . 99
5.6 Certificate . 101
5.7 Packet I/O . 102
5.8 Database . 103
5.9 Automation . 107
5.10 RCS . 154

6 Hook Reference . 155
6.1 Hooks . 156

6.1.1 Event Notifications and Triggers . 156
6.1.2 User Defaults . 159
6.1.3 Netsync Permission Hooks . 161
6.1.4 Netsync Transport Hooks . 162
6.1.5 Trust Evaluation Hooks . 164
6.1.6 External Diff Tools . 166
6.1.7 External Merge Tools . 166
6.1.8 Selector Expansion . 167
6.1.9 Attribute Handling . 168
6.1.10 Validation Hooks . 169
6.1.11 Meta Hooks . 169

6.2 Additional Lua Functions . 170

7 Special Topics . 173
7.1 Internationalization . 174
7.2 Hash Integrity . 177
7.3 Rebuilding ancestry . 180
7.4 Mark-Merge . 182
7.5 Regular Expression Syntax . 199

7.5.1 Regexp Syntax Summary . 199
7.5.2 Regexp Details . 206

Appendix A Default hooks . 237

General Index . 267

Chapter 1: Concepts 1

1 Concepts

This chapter should familiarize you with the concepts, terminology, and behavior described
in the remainder of the user manual. Please take a moment to read it, as later sections will
assume familiarity with these terms.

2 monotone documentation

1.1 Versions of files

Suppose you wish to modify a file ‘file.txt’ on your computer. You begin with one
version of the file, load it into an editor, make some changes, and save the file again. Doing
so produces a new version of the file. We will say that the older version of the file was
a parent, and the new version is a child, and that you have performed an edit between
the parent and the child. We may draw the relationship between parent and child using
a graph, where the arrow in the graph indicates the direction of the edit, from parent to
child.

file.txt
parent version

file.txt
child version

We may want to identify the parent and the child precisely, for sake of reference. To do
so, we will compute a cryptographic hash function, called sha1, of each version. The details
of this function are beyond the scope of this document; in summary, the sha1 function takes
a version of a file and produces a short string of 20 bytes, which we will use to uniquely
identify the version1. Now our graph does not refer to some “abstract” parent and child,
but rather to the exact edit we performed between a specific parent and a specific child.

file.txt
parent version

file.txt
child version

a91566316d208dc405795904f8d67ae3a0e765cbSHA1

65f1bde1f38262034e7c3457301e8f736ba6381b SHA1

When dealing with versions of files, we will dispense with writing out “file names”, and
identify versions purely by their sha1 value, which we will also refer to as their file ID.
Using IDs alone will often help us accommodate the fact that people often wish to call files

1 We say sha1 values are “unique” here, when in fact there is a small probability of two different versions
having the same sha1 value. This probability is very small, so we discount it.

Chapter 1: Concepts 3

by different names. So now our graph of parent and child is just a relationship between two
versions, only identified by ID.

65f1bde1f38262034e7c3457301e8f736ba6381b
parent version

a91566316d208dc405795904f8d67ae3a0e765cb
child version

Version control systems, such as monotone, are principally concerned with the storage
and management of multiple versions of some files. One way to store multiple versions of a
file is, literally, to save a separate complete copy of the file, every time you make a change.
When necessary, monotone will save complete copies of your files, compressed with the zlib
compression format.

Hello Hello, World!
Hello there
world, how do
you do?

1st version 2nd version 3rd version

Often we find that successive versions of a file are very similar to one another, so storing
multiple complete copies is a waste of space. In these cases, rather than store complete
copies of each version of a file, we store a compact description of only the changes which
are made between versions. Such a description of changes is called a delta.

Storing deltas between files is, practically speaking, as good as storing complete versions
of files. It lets you undo changes from a new version, by applying the delta backwards, and
lets your friends change their old version of the file into the new version, by applying the
delta forwards. Deltas are usually smaller than full files, so when possible monotone stores
deltas, using a modified xdelta format. The details of this format are beyond the scope of
this document.

Hello Hello, World!

1st version 2nd version
difference
between
versions

+[, World]

4 monotone documentation

1.2 Versions of trees

After you have made many different files, you may wish to capture a “snapshot” of the
versions of all the files in a particular collection. Since files are typically collected into trees
in a file system, we say that you want to capture a version of your tree. Doing so will permit
you to undo changes to multiple files at once, or send your friend a set of changes to many
files at once.

To make a snapshot of a tree, we begin by writing a special file called a manifest. In fact,
monotone will write this file for us, but we could write it ourselves too. It is just a plain text
file, in a structured but human-readable format used by several parts of monotone. Each
file entry of a manifest binds a specific name, as a full path from the root of the workspace,
to a specific file ID, as the hash of its content. In this way, the manifest collects together
the snapshot of the file names and contents you have at this point in time; other snapshots
with other manifests can use different names for the same file, or different contents for the
same name.

Other entries in the manifest format name directories or store file attrs, which we will
cover later.

manifest
“ ”format_version 1

“”dir

“ ”dir fs

 “ / . ”file fs readdir c
[]content f2e5719b975e319c2371c98ed2c7231313fac9b5

 “ / . ”file fs read_write c
[]content 81f0c9a0df254bc8d51bb785713a9f6d0b020b22

 “ / . ”file fs pipe c
[]content 943851e7da46014cb07473b90d55dd5145f24de0

 “ / . ”file fs inode c
[]content 8ddcfcc568f33db6205316d072825d2e5c123275

Now we note that a manifest is itself a file. Therefore a manifest can serve as input to
the sha1 function, and thus every manifest has an ID of its own. By calculating the sha1
value of a manifest, we capture the state of our tree in a single manifest ID. In other words,
the ID of the manifest essentially captures all the IDs and file names of every file in our

Chapter 1: Concepts 5

tree, combined. So we may treat manifests and their IDs as snapshots of a tree of files,
though lacking the actual contents of the files themselves.

manifest
...
 “ / . ”file fs readdir c

[]content f2e5719b975e319c2371c98ed2c7231313fac9b5
...

SHA1

:manifest ID
 a2eeaa28574141a7d48fa1cc2802070150b93ec4

.readdir c
(...) {int vfs_readdir

...

SHA1

As with versions of files, we may decide to store manifests in their entirety, or else we
may store only a compact description of changes which occur between different versions of
manifests. As with files, when possible monotone stores compact descriptions of changes
between manifests; when necessary it stores complete versions of manifests.

6 monotone documentation

1.3 Historical records

Suppose you sit down to edit some files. Before you start working, you may record a
manifest of the files, for reference sake. When you finish working, you may record another
manifest. These “before and after” snapshots of the tree of files you worked on can serve as
historical records of the set of changes, or changeset, that you made. In order to capture a
“complete” view of history – both the changes made and the state of your file tree on either
side of those changes – monotone builds a special composite file called a revision each time
you make changes. Like manifests, revisions are ordinary text files which can be passed
through the sha1 function and thus assigned a revision ID.

revision
“ ”format_version 1

[]new_manifest 83bc0a52da351cac950ac1c12d85be494fc21199

[]old_revision 75c9ffcab50c46e77e642751314b34a16fba36ff

" / . "add_file include foo h
 []content 8ca6a9862bdeddfdb4b12248c075fa9570f45f6d

“ / . ”patch include bar h
 []from d624672a03e42d2172e56c4d54924af10ff8518d
 []to 2f58cfc4791aa1695b76c31c9cd1139b3d79ee1b

SHA1

:revision ID
 a2eeaa28574141a7d48fa1cc2802070150b93ec4

The content of a revision includes one or more changesets. These changesets make
reference to file IDs, to describe how the tree changed. The revision also contains manifest
IDs, as another way of describing the tree “before and after” the changeset — storing this
information in two forms allows monotone to detect any bugs or corrupted data before
they can enter your history. Finally and crucially, revisions also make reference to other
revision IDs. This fact – that revisions include the IDs of other revisions – causes the set
of revisions to join together into a historical chain of events, somewhat like a “linked list”.
Each revision in the chain has a unique ID, which includes by reference all the revisions
preceding it. Even if you undo a changeset, and return to a previously-visited manifest ID

Chapter 1: Concepts 7

during the course of your edits, each revision will incorporate the ID of its predecessor, thus
forming a new unique ID for each point in history.

revision
“ ”format_version 1

[]new_manifest 8a05c60422770bbf49a3192c2367ddaa066538ca

[]old_revision f45add3bfb21cb459d99b6a9c0111df75f6d9f85

...

revision
“ ”format_version 1

[]new_manifest dbd022dc423fd7f473e0fa79842cd9901cc2dd69

: []old_revision

...

SHA1

SHA1

revision
“ ”format_version 1

[]new_manifest 2027b4ab2febf98bd9a096c000a69a8227cdaaf7

[]old_revision 1c83997e7ab40c0df47554c81b7d4e7ee691eb0d

...

8 monotone documentation

1.4 Certificates

Often, you will wish to make a statement about a revision, such as stating the reason that
you made some changes, or stating the time at which you made the changes, or stating that
the revision passes a test suite. Statements such as these can be thought of, generally, as a
bundle of information with three parts:
• an ID, indicating which revision you are making a statement about
• a name indicating the type of statement you are making, such as “changelog”, “date”

or “testresult”
• a value indicating the remaining detail of the statement, such as “fixed a bug”, “March

9th” or “1”

For example, if you want to say that a particular revision was composed on April 4,
2003, you might make a statement like this:

statement
revision ID: a2eeaa28574141a7d48fa1cc2802070150b93ec4
statement name: "date"
statement value: "2003-04-04T07:39:51"

In an ideal world, these are all the parts of a statement we would need in order to go
about our work. In the real world, however, there are sometimes malicious people who
would make false or misleading statements; so we need a way to verify that a particular
person made a particular statement about a revision. We therefore will add two more pieces
of information to our bundle:
• a key which identifies the person making a statement
• a signature — just a large number with particular properties — certifying the fact that

the person made the statement

When these 2 items accompany a statement, we call the total bundle of 5 items a
certificate, or cert. A cert makes a statement in a secure fashion. The security of the
signature in a cert is derived from the rsa cryptography system, the details of which are
beyond the scope of this document.

Monotone uses certs extensively. Any “extra” information which needs to be stored,
transmitted or retrieved — above and beyond files, manifests, and revisions — is kept in
the form of certs. This includes change logs, time and date records, branch membership,

Chapter 1: Concepts 9

authorship, test results, and more. When monotone makes a decision about storing, trans-
mitting, or extracting files, manifests, or revisions, the decision is often based on certs it
has seen, and the trustworthiness you assign to those certs.

The rsa cryptography system — and therefore monotone itself — requires that you ex-
change special “public” numbers with your friends, before they will trust certificates signed
by you. These numbers are called public keys. Giving someone your public key does not
give them the power to impersonate you, only to verify signatures made by you. Exchanging
public keys should be done over a trusted medium, in person, or via a trusted third party.
Advanced secure key exchange techniques are beyond the scope of this document.

10 monotone documentation

1.5 Storage and workflow

Monotone moves information in and out of four different types of storage:

• a keystore in your home directory

• a workspace in the local file system

• a local database in the local file system

• a remote database elsewhere on the internet

The keystore is a directory ‘.monotone/keys’ in your home directory which contains
copies of all your private keys. Each key is stored in a file whose name is the key identifier
with some characters converted to underscores. When you use a key to sign a cert, the
public half of that key is copied into your local database along with the cert.

All information passes through your local database, en route to some other destination.
For example, when changes are made in a workspace, you may save those changes to your
database, and later you may synchronize your database with someone else’s. Monotone
will not move information directly between a workspace and a remote database, or between
workspaces. Your local database is always the “switching point” for communication.

remote
database

local
database workspace

commit, update
(certified local exchanges)

push, pull, sync
(untrusted network exchanges)

A workspace is a tree of files in your file system, arranged according to the list of file
paths and IDs in a particular manifest. A special directory called ‘_MTN’ exists in the root
of any workspace. Monotone keeps some special files in the ‘_MTN’ directory, in order to
track changes you make to your workspace. If you ever want to know if a directory is a
monotone workspace, just look for this ‘_MTN’ directory.

Aside from the special ‘_MTN’ directory, a workspace is just a normal tree of files. You can
directly edit the files in a workspace using a plain text editor or other program; monotone
will automatically notice when you make any changes. If you wish to add files, remove files,
or move files within your workspace, you must tell monotone explicitly what you are doing,
as these actions cannot be deduced.

If you do not yet have a workspace, you can check out a workspace from a database, or
construct one from scratch and add it into a database. As you work, you will occasionally
commit changes you have made in a workspace to a database, and update a workspace

Chapter 1: Concepts 11

to receive changes that have arrived in a database. Committing and updating take place
purely between a database and a workspace; the network is not involved.

workspace
_MTN/
Makefile
src/func.c
src/func.h
src/main.c

add, commit

checkout, update
local

database

A database is a single, regular file. You can copy or back it up using standard methods.
Typically you keep a database in your home directory. Databases are portable between
different machine types. You can have multiple databases and divide your work between
them, or keep everything in a single database if you prefer. You can dump portions of your
database out as text, and read them back into other databases, or send them to your friends.
Underneath, databases are accessed using a standard, robust data manager, which makes
using even very large databases efficient. In dire emergencies, you can directly examine and
manipulate a database using a simple SQL interface.

A database contains many files, manifests, revisions, and certificates, some of which are
not immediately of interest, some of which may be unwanted or even false. It is a collection
of information received from network servers, workspaces, and other databases. You can
inspect and modify your databases without affecting your workspaces, and vice-versa.

Monotone knows how to exchange information in your database with other remote data-
bases, using an interactive protocol called netsync. It supports three modes of exchange:
pushing, pulling, and synchronizing. A pull operation copies data from a remote database
to your local database. A push operation copies data from your local database to a remote
database. A sync operation copies data both directions. In each case, only the data missing
from the destination is copied. The netsync protocol calculates the data to send “on the
fly” by exchanging partial hash values of each database.

push

pull

syncremote
database

local
database

In general, work flow with monotone involves 3 distinct stages:
• When you commit changes from your workspace to your database, your database stores

the changes but does not communicate with the network. Your commits happen imme-
diately, without consulting any other party, and do not require network connectivity.

12 monotone documentation

• When you are ready to exchange work with someone else, you can push, pull, or sync
with other databases on the network. When you talk to other servers on the network,
your database may change, but your workspace will not. In fact, you do not need a
workspace at all when exchanging work.

• When you update your workspace, some (but not all) of the changes which your data-
base received from the network are applied to your workspace. The network is not
consulted during updates.

The last stage of workflow is worth clarifying: monotone does not blindly apply all
changes it receives from a remote database to your workspace. Doing so would be very
dangerous, because remote databases are not always trustworthy systems. Rather, mono-
tone evaluates the certificates it has received along with the changes, and decides which
particular changes are safe and desirable to apply to your workspace.

You can always adjust the criteria monotone uses to judge the trustworthiness and
desirability of changes in your database. But keep in mind that it always uses some criteria;
receiving changes from a remote server is a different activity than applying changes to a
workspace. Sometimes you may receive changes which monotone judges to be untrusted or
bad; such changes may stay in your database but will not be applied to your workspace.

Remote databases, in other words, are just untrusted “buckets” of data, which you can
trade with promiscuously. There is no trust implied in communication.

Chapter 1: Concepts 13

1.6 Forks and merges

So far we have been talking about revisions as though each logically follows exactly one
revision before it, in a simple sequence of revisions.

parent
revision

grandchild
revision

child
revision

This is a rosy picture, but sometimes it does not work out this way. Sometimes when you
make new revisions, other people are simultaneously making new revisions as well, and their
revisions might be derived from the same parent as yours, or contain different changesets.
Without loss of generality, we will assume simultaneous edits only happen two-at-a-time;
in fact many more edits may happen at once but our reasoning will be the same.

We call this situation of simultaneous edits a fork, and will refer to the two children of
a fork as the left child and right child. In a large collection of revisions with many people
editing files, especially on many different computers spread all around the world, forks are
a common occurrence.

parent
revision

left child
revision

right child
revision

If we analyze the changes in each child revision, we will often find that the changeset
between the parent and the left child are unrelated to the changeset between the parent and

14 monotone documentation

the right child. When this happens, we can usually merge the fork, producing a common
grandchild revision which contains both changesets.

parent
revision

left child
revision

right child
revision

merged
revision

Chapter 1: Concepts 15

1.7 Branches

Sometimes, people intentionally produce forks which are not supposed to be merged ; perhaps
they have agreed to work independently for a time, or wish to change their files in ways
which are not logically compatible with each other. When someone produces a fork which
is supposed to last for a while (or perhaps permanently) we say that the fork has produced
a new branch. Branches tell monotone which revisions you would like to merge, and which
you would like to keep separate.

You can see all the available branches using mtn list branches.

Branches are indicated with certs. The cert name branch is reserved for use by monotone,
for the purpose of identifying the revisions which are members of a branch. A branch cert
has a symbolic “branch name” as its value. When we refer to “a branch”, we mean all
revisions with a common branch name in their branch certs.

For example, suppose you are working on a program called “wobbler”. You might develop
many revisions of wobbler and then decide to split your revisions into a “stable branch”
and an “unstable branch”, to help organize your work. In this case, you might call the
new branches “wobbler-stable” and “wobbler-unstable”. From then on, all revisions in the
stable branch would get a cert with name branch and value wobbler-stable; all revisions
in the unstable branch would get a cert with name branch and value wobbler-unstable.
When a wobbler-stable revision forks, the children of the fork will be merged. When a
wobbler-unstable revision forks, the children of the fork will be merged. However, the
wobbler-stable and wobbler-unstable branches will not be merged together, despite
having a common ancestor.

stable
revision

left stable
child

right stable
child

merged
stable revision

unstable
revision

left unstable
child

right unstable
child

merged
unstable revision

common ancestor
revision

stable branch unstable branch

16 monotone documentation

For each branch, the set of revisions with no children is called the heads of the branch.
Monotone can automatically locate, and attempt to merge, the heads of a branch. If it fails
to automatically merge the heads, it may ask you for assistance or else fail cleanly, leaving
the branch alone.

For example, if a fork’s left child has a child of its own (a “left grandchild”), monotone
will merge the fork’s right child with the left grandchild, since those revisions are the heads
of the branch. It will not merge the left child with the right child, because the left child is
not a member of the heads.

parent
revision

left child

right child

merged
revision

left
grandchild

the heads of the branch
(before the merge)

When there is only one revision in the heads of a branch, we say that the heads are
merged, or more generally that the branch is merged, since the heads is the logical set of
candidates for any merging activity. If there are two or more revisions in the heads of a
branch, and you ask to merge the branch, monotone will merge them two-at-a-time until
there is only one.

1.7.1 Branch Names

The branch names used in the above section are fine for an example, but they would be bad
to use in a real project. The reason is, monotone branch names must be globally unique,
over all branches in the world. Otherwise, bad things can happen. Fortunately, we have a
handy source of globally unique names — the DNS system.

When naming a branch, always prepend the reversed, fully qualified, domain name
of a host that you control or are otherwise authorized to use. For example, monotone
development happens on the branch net.venge.monotone, because venge.net belongs to

Chapter 1: Concepts 17

monotone’s primary author. The idea is that this way, you can coordinate with other
people using a host to make sure there are no conflicts — in the example, monotone’s
primary author can be certain that no-one else using venge.net will start up a different
program named monotone. If you work for Yoyodyne, Inc. (owners of yoyodyne.com), then
all your branch names should look like com.yoyodyne.something .

What the something part looks like is up to you, but usually the first part is the
project name (the monotone in net.venge.monotone), and then possibly more stuff after
that to describe a particular branch. For example, monotone’s win32 support was initially
developed on the branch net.venge.monotone.win32.

(For more information, see Section 3.12 [Naming Conventions], page 66.)

18 monotone documentation

Chapter 2: Tutorial 19

2 Tutorial

This chapter illustrates the basic uses of monotone by means of an example, fictional soft-
ware project.

2.1 Issues

Before we walk through the tutorial, there are two minor issues to address: standard options
and revision selectors.

2.1.1 Standard Options

Before operating monotone, two important command-line options should be explained.
• Most commands operate on a database, which is selected with the ‘--db’ option.
• Many commands operate on a subset of the database, called a branch, which is selected

with the ‘--branch’ option.

Monotone will cache the settings for these options in your workspace, so ordinarily once
you have checked out a project, you will not need to specify them again. We will therefore
only mention these arguments in the first example.

2.1.2 Revision Selectors

Many commands require you to supply 40-character sha1 values as arguments, which iden-
tify revisions. These “revision IDs” are tedious to type, so monotone permits you to sup-
ply “revision selectors” rather than complete revision IDs. Selectors are a more “human
friendly” way of specifying revisions by combining certificate values into unique identifiers.
This “selector” mechanism can be used anywhere a revision ID would normally be used.
For details on selector syntax, see Section 3.2 [Selectors], page 47.

We are now ready to explore our fictional project.

20 monotone documentation

2.2 The Fictional Project

Our fictional project involves 3 programmers cooperating to write firmware for a robot, the
JuiceBot 7, which dispenses fruit juice. The programmers are named Jim, Abe and Beth.
• Jim lives in Japan, and owns JuiceBot Inc. You will know when we’re talking about

Jim, because everything he does involves the letter “j”.
• Abe lives in Australia and writes code related to apple juice. You will know when we’re

talking about Abe, because everything he does involves the letter “a”.
• Beth lives in Brazil and writes code related to banana juice. You will know when we’re

talking about Beth, because everything she does involves the letter “b”.

In our example the programmers work privately on laptops, and are usually disconnected
from the network. They share no storage system. Thus when each programmer enters a
command, it affects only his or her own computer, unless otherwise stated.

In the following, our fictional project team will work through several version control
tasks. Some tasks must be done by each member of our example team; other tasks involve
only one member.

Chapter 2: Tutorial 21

2.3 Creating a Database

The first step Jim, Abe and Beth each need to perform is to create a new database. This
is done with the mtn db init command, providing a ‘--db’ option to specify the location
of the new database. Each programmer creates their own database, which will reside in
their home directory and store all the revisions, files and manifests they work on. Monotone
requires this step as an explicit command, to prevent spurious creation of databases when
an invalid ‘--db’ option is given.

In real life, most people prefer to keep one database for each project they work on. If
we followed that convention here in the tutorial, though, then all the databases would be
called juicebot.mtn, and that would make things more confusing to read. So instead, we’ll
have them each name their database after themselves.

Thus Jim issues the command:
$ mtn db init --db=~/jim.mtn

Abe issues the command:
$ mtn db init --db=~/abe.mtn

And Beth issues the command:
$ mtn db init --db=~/beth.mtn

22 monotone documentation

2.4 Generating Keys

Now Jim, Abe and Beth must each generate an rsa key pair for themselves. This step
requires choosing a key identifier. Typical key identifiers are similar to email addresses,
possibly modified with some prefix or suffix to distinguish multiple keys held by the same
owner. Our example programmers will use their email addresses at the fictional “juice-
bot.co.jp” domain name. When we ask for a key to be generated, monotone will ask us for
a passphrase. This phrase is used to encrypt the key when storing it on disk, as a security
measure.

Jim does the following:
$ mtn genkey jim@juicebot.co.jp

mtn: generating key-pair ’jim@juicebot.co.jp’

enter passphrase for key ID [jim@juicebot.co.jp] : <Jim enters his passphrase>

confirm passphrase for key ID [jim@juicebot.co.jp]: <Jim confirms his passphrase>

mtn: storing key-pair ’jim@juicebot.co.jp’ in /home/jim/.monotone/keys

Abe does something similar:
$ mtn genkey abe@juicebot.co.jp

mtn: generating key-pair ’abe@juicebot.co.jp’

enter passphrase for key ID [abe@juicebot.co.jp] : <Abe enters his passphrase>

confirm passphrase for key ID [abe@juicebot.co.jp]: <Abe confirms his passphrase>

mtn: storing key-pair ’abe@juicebot.co.jp’ in /home/abe/.monotone/keys

as does Beth:
$ mtn genkey beth@juicebot.co.jp

mtn: generating key-pair ’beth@juicebot.co.jp’

enter passphrase for key ID [beth@juicebot.co.jp] : <Beth enters her passphrase>

confirm passphrase for key ID [beth@juicebot.co.jp]: <Beth confirms her passphrase>

mtn: storing key-pair ’beth@juicebot.co.jp’ in /home/beth/.monotone/keys

Each programmer has now generated a key pair and placed it in their keystore. Each
can list the keys in their keystore, to ensure the correct key was generated. For example,
Jim might see this:

$ mtn list keys

[public keys]

9e9e9ef1d515ad58bfaa5cf282b4a872d8fda00c jim@juicebot.co.jp (*)

(*) - only in /home/jim/.monotone/keys/

[private keys]

771ace046c27770a99e5fddfa99c9247260b5401 jim@juicebot.co.jp

The hexadecimal string printed out before each key name is a fingerprint of the key,
and can be used to verify that the key you have stored under a given name is the one you
intended to store. Monotone will never permit one keystore to store two keys with the same
name or the same fingerprint.

This output shows one private and one public key stored under the name
jim@juicebot.co.jp, so it indicates that Jim’s key-pair has been successfully generated
and stored. On subsequent commands, Jim will need to re-enter his passphrase in order to
perform security-sensitive tasks.

Pretty soon Jim gets annoyed when he has to enter his passphrase every time he invokes
mtn (and, more importantly, it simplifies the tutorial text to skip the passphrase prompts)

Chapter 2: Tutorial 23

so he decides to use ssh-agent to store his key. He does this by using the ssh_agent_export
command to export his key into a format that ssh-agent can understand and adding it with
ssh-add.

$ mtn ssh_agent_export ~/.ssh/id_monotone

enter passphrase for key ID [user@example.com]:

enter new passphrase for key ID [user@example.com]:

confirm passphrase for key ID [user@example.com]:

$ chmod 600 ~/.ssh/id_monotone

From now on, Jim just needs to add his key to ssh-agent when he logs in and he will not
need to enter his passphrase every time he uses monotone.

$ ssh-agent /bin/bash

$ ssh-add ~/.ssh/id_monotone

Enter passphrase for /home/user/.ssh/id_monotone:

Identity added: /home/user/.ssh/id_monotone (/home/user/.ssh/id_monotone)

$ mtn ci -m"Changed foo to bar"

$ mtn push

The following procedure is deprecated and not suggested for general use as it is very
insecure.

Jim isn’t very worried about security so he decides to store his passphrase in his
‘monotonerc’ file. He does this by writing a hook function which returns the passphrase:

$ mkdir ~/.monotone

$ cat >>~/.monotone/monotonerc

function get_passphrase(keypair_id)

return "jimsekret"

end

^D

Now whenever monotone needs his passphrase, it will call this function instead of prompt-
ing him to type it. Note that we are appending the new hook to the (possibly existing) file.
We do this to avoid losing other changes by mistake; therefore, be sure to check that no
other get_passphrase function appears in the configuration file.

Abe and Beth do the same, with their secret passphrases.

24 monotone documentation

2.5 Starting a New Project

Before he can begin work on the project, Jim needs to create a workspace — a directory
whose contents monotone will keep track of. Often, one works on projects that someone else
has started, and creates workspaces with the checkout command, which you’ll learn about
later. Jim is starting a new project, though, so he does something a little bit different. He
uses the mtn setup command to create a new workspace.

This command creates the named directory (if it doesn’t already exist), and creates the
‘_MTN’ directory within it. The ‘_MTN’ directory is how monotone recognizes that a direc-
tory is a workspace, and monotone stores some bookkeeping files within it. For instance,
command line values for the ‘--db’, ‘--branch’ or ‘--key’ options to the setup command
will be cached in a file called ‘_MTN/options’, so you don’t have to keep passing them to
monotone all the time.

He chooses jp.co.juicebot.jb7 as a branch name. (See Section 3.12 [Naming Conven-
tions], page 66 for more information about appropriate branch names.) Jim then creates
his workspace:

/home/jim$ mtn --db=jim.mtn --branch=jp.co.juicebot.jb7 setup juice

/home/jim$ cd juice

/home/jim/juice$

Notice that Jim has changed his current directory to his newly created workspace. For
the rest of this example we will assume that everyone issues all further monotone commands
from their workspace directories.

Chapter 2: Tutorial 25

2.6 Adding Files

Next Jim decides to add some files to the project. He writes up a file containing the
prototypes for the JuiceBot 7:

$ mkdir include

$ cat >include/jb.h

/* Standard JuiceBot hw interface */

#define FLOW_JUICE 0x1

#define POLL_JUICE 0x2

int spoutctl(int port, int cmd, void *x);

/* JuiceBot 7 API */

#define APPLE_SPOUT 0x7e

#define BANANA_SPOUT 0x7f

void dispense_apple_juice ();

void dispense_banana_juice ();

^D

Then adds a couple skeleton source files which he wants Abe and Beth to fill in:

$ mkdir src

$ cat >src/apple.c

#include "jb.h"

void

dispense_apple_juice()

{

/* Fill this in please, Abe. */

}

^D

$ cat >src/banana.c

#include "jb.h"

void

dispense_banana_juice()

{

/* Fill this in please, Beth. */

}

^D

Now Jim tells monotone to add these files to its record of his workspace. He specifies
one filename and one directory; monotone recursively scans the directory and adds all its
files.

$ mtn add include/jb.h src

mtn: adding include/jb.h to workspace manifest

mtn: adding src/apple.c to workspace manifest

mtn: adding src/banana.c to workspace manifest

This command produces a record of Jim’s intentions in a special file called
‘_MTN/revision’, stored in the workspace. The file is plain text:

26 monotone documentation

$ cat _MTN/revision

format_version "1"

new_manifest [2098eddbe833046174de28172a813150a6cbda7b]

old_revision []

add_file "include/jb.h"

content [3b12b2d0b31439bd50976633db1895cff8b19da0]

add_file "src/apple.c"

content [2650ffc660dd00a08b659b883b65a060cac7e560]

add_file "src/banana.c"

content [e8f147e5b4d5667f3228b7bba1c5c1e639f5db9f]

You will never have to look at this file, but it is nice to know that it is there.
Jim then gets up from his machine to get a coffee. When he returns he has forgotten

what he was doing. He asks monotone:
$ mtn status

Current branch: jp.co.juicebot.jb7

Changes against parent :

added include/jb.h

added src/apple.c

added src/banana.c

The output of this command tells Jim that his edits, so far, constitute only the addition
of some files.

Jim wants to see the actual details of the files he added, however, so he runs a com-
mand which prints out the status and a GNU “unified diff” of the patches involved in the
changeset:

Chapter 2: Tutorial 27

$ mtn diff

#

old_revision []

#

add_file "include/jb.h"

content [3b12b2d0b31439bd50976633db1895cff8b19da0]

#

add_file "src/apple.c"

content [2650ffc660dd00a08b659b883b65a060cac7e560]

#

add_file "src/banana.c"

content [e8f147e5b4d5667f3228b7bba1c5c1e639f5db9f]

#

==

--- include/jb.h

+++ include/jb.h 3b12b2d0b31439bd50976633db1895cff8b19da0

@ -0,0 +1,13 @

+/* Standard JuiceBot hw interface */

+

+#define FLOW_JUICE 0x1

+#define POLL_JUICE 0x2

+#define SET_INTR 0x3

+int spoutctl(int port, int cmd, void *x);

+

+/* JuiceBot 7 API */

+

+#define APPLE_SPOUT 0x7e

+#define BANANA_SPOUT 0x7f

+void dispense_apple_juice ();

+void dispense_banana_juice ();

==

--- src/apple.c

+++ src/apple.c 2650ffc660dd00a08b659b883b65a060cac7e560

@ -0,0 +1,7 @

+#include "jb.h"

+

+void

+dispense_apple_juice()

+{

+ /* Fill this in please, Abe. */

+}

==

--- src/banana.c

+++ src/banana.c e8f147e5b4d5667f3228b7bba1c5c1e639f5db9f

@ -0,0 +1,7 @

+#include "jb.h"

+

+void

+dispense_banana_juice()

+{

+ /* Fill this in please, Beth. */

+}

28 monotone documentation

2.7 Committing Work

Satisfied with the work he’s done, Jim wants to save his changes. He then commits his
workspace, which causes monotone to process the ‘_MTN/revision’ file and record the file
contents, manifest, and revision into the database. Since he provided a branch name when
he ran setup, monotone will use this as the default branch name when he commits.

$ mtn commit --message="initial checkin of project"

mtn: beginning commit on branch ’jp.co.juicebot.jb7’

mtn: committed revision 2e24d49a48adf9acf3a1b6391a080008cbef9c21

When monotone committed Jim’s revision, it updated ‘_MTN/revision’ to record the
workspace’s new base revision ID. Jim can use this revision ID in the future, as an argument
to the checkout command, if he wishes to return to this revision:

$ mtn automate get_base_revision_id

2e24d49a48adf9acf3a1b6391a080008cbef9c21

Monotone also generated a number of certificates attached to the new revision, and made
sure that the database contained a copy of Jim’s public key. These certs store metadata
about the commit. Jim can ask monotone for a list of certs on this revision.

$ mtn ls certs 2e24d49a48adf9acf3a1b6391a080008cbef9c21

Key : jim@juicebot.co.jp

Sig : ok

Name : branch

Value : jp.co.juicebot.jb7

Key : jim@juicebot.co.jp

Sig : ok

Name : date

Value : 2004-10-26T02:53:08

Key : jim@juicebot.co.jp

Sig : ok

Name : author

Value : jim@juicebot.co.jp

Key : jim@juicebot.co.jp

Sig : ok

Name : changelog

Value : initial checkin of project

The output of this command has a block for each cert found. Each block has 4 sig-
nificant pieces of information. The first indicates the signer of the cert, in this case
jim@juicebot.co.jp. The second indicates whether this cert is “ok”, meaning whether
the rsa signature provided is correct for the cert data. The third is the cert name, and the
fourth is the cert value. This list shows us that monotone has confirmed that, according
to jim@juicebot.co.jp, the revision 2e24d49a48adf9acf3a1b6391a080008cbef9c21 is a
member of the branch jp.co.juicebot.jb7, written by jim@juicebot.co.jp, with the
given date and changelog.

It is important to keep in mind that revisions are not “in” or “out” of a branch in any
global sense, nor are any of these cert values true or false in any global sense. Each cert
indicates that some person – in this case Jim – would like to associate a revision with some
value; it is up to you to decide if you want to accept that association.

Chapter 2: Tutorial 29

Jim can now check the status of his branch using the “heads” command, which lists all
the head revisions in the branch:

$ mtn heads

branch ’jp.co.juicebot.jb7’ is currently merged:

2e24d49a48adf9acf3a1b6391a080008cbef9c21 jim@juicebot.co.jp 2004-10-26T02:53:08

The output of this command tells us that there is only one current “head” revision in the
branch jp.co.juicebot.jb7, and it is the revision Jim just committed. A head revision
is one without any descendants. Since Jim has not committed any changes to this revision
yet, it has no descendants.

30 monotone documentation

2.8 Basic Network Service

Jim now decides he will make his base revision available to his employees. To do this, he
arranges for Abe and Beth to synchronise their databases with his, over the network. There
are two pre-requisites for this: first, he has to get a copy of each of their public keys; then,
he has to tell monotone that the holders of those keys are permitted to access his database.
Finally, with these pre-requisites in place, he needs to tell monotone to provide network
access to his database.

First, Abe exports his public key:
$ mtn --db=~/abe.mtn pubkey abe@juicebot.co.jp >~/abe.pubkey

His public key is just a plain block of ASCII text:
$ cat ~/abe.pubkey

[pubkey abe@juicebot.co.jp]

MIGdMA0GCSqGSIb3DQEBAQUAA4GLADCBhwKBgQCbaVff9SF78FiB/1nUdmjbU/TtPyQqe/fW

CDg7hSg1yY/hWgClXE9FI0bHtjPMIx1kBOig09AkCT7tBXM9z6iGWxTBhSR7D/qsJQGPorOD

DO7xovIHthMbZZ9FnvyB/BCyiibdWgGT0Gtq94OKdvCRNuT59e5v9L4pBkvajb+IzQIBEQ==

[end]

Beth also exports her public key:
$ mtn --db=~/beth.mtn pubkey beth@juicebot.co.jp >~/beth.pubkey

Then Abe and Beth both send their keys to Jim. The keys are not secret, but the team
members must be relatively certain that they are exchanging keys with the person they
intend to trust, and not some malicious person pretending to be a team member. Key
exchange may involve sending keys over an encrypted medium, or meeting in person to
exchange physical copies, or any number of techniques. All that matters, ultimately, is that
Jim receives both Abe’s and Beth’s key in a way that he can be sure of.

So eventually, after key exchange, Jim has the public key files in his home directory. He
tells monotone to read the associated key packets into his database:

$ cat ~/abe.pubkey ~/beth.pubkey | mtn --db=~/jim.mtn read

mtn: read 2 packets

Now Jim’s monotone is able to identify Beth and Abe, and he is ready to give them
permission to access his database. He does this by editing a pair of small files in his
‘~/.monotone’ directory:

$ cat >>~/.monotone/read-permissions

pattern "*"

allow "abe@juicebot.co.jp"

allow "beth@juicebot.co.jp"

^D

$ cat >>~/.monotone/write-permissions

abe@juicebot.co.jp

beth@juicebot.co.jp

^D

These files are read by the default monotone hooks that will decide whether remote
monotone users will be allowed access to Jim’s database, identified by the named keys.

Jim then makes sure that his TCP port 4691 is open to incoming connections, adjusting
his firewall settings as necessary, and runs the monotone serve command:

$ mtn --db=jim.mtn serve

This command starts monotone listening on all network interfaces of his laptop on the
default port 4691, serving everything in his database.

Chapter 2: Tutorial 31

2.9 Synchronising Databases

With Jim’s server preparations done, now Abe is ready to fetch Jim’s code. To do this he
issues the monotone sync command:

$ mtn --db=abe.mtn sync jim-laptop.juicebot.co.jp "jp.co.juicebot.jb7*"

mtn: setting default server to jim-laptop.juicebot.co.jp

mtn: setting default branch include pattern to ’jp.co.juicebot.jb7*’

mtn: setting default branch exclude pattern to ’’

mtn: connecting to jim-laptop.juicebot.co.jp

mtn: first time connecting to server jim-laptop.juicebot.co.jp:4691

mtn: I’ll assume it’s really them, but you might want to double-check

mtn: their key’s fingerprint: 9e9e9ef1d515ad58bfaa5cf282b4a872d8fda00c

mtn: warning: saving public key for jim@juicebot.co.jp to database

mtn: finding items to synchronize:

mtn: bytes in | bytes out | revs in | revs out | revs written

mtn: 2587 | 1025 | 1 | 0 | 1

mtn: successful exchange with jim-laptop.juicebot.co.jp

Abe now has, in his database, a copy of everything Jim put in the branch. Therefore Abe
can disconnect from the expensive network connection he’s on and work locally for a while.
Remember that, in monotone, work is done between workspaces in the filesystem and the
local database; network connectivity is necessary only when that work is to be shared with
others.

As we follow the juicebot team through the next several steps, we’ll see them run the
sync command again with Jim, and work will flow both ways. The first time you sync
a new database, monotone remembers the server and branch patterns you use, and makes
them the default for future operations.

At the end of each exchange, information about all changes in the branch known to each
database have been sent to the other party - including the work of the third team member
that had previously been exchanged. As well as allowing each team member to learn about
the others’ work, this also means that each party’s laptop contains a backup of the others’
work too.

Jim, Abe and Beth will continue working like this while they’re getting started, and we’ll
revisit the issue of network service with them a little later as the project grows.

32 monotone documentation

2.10 Making Changes

Abe decides to do some work on his part of the code. He has a copy of Jim’s database
contents, but cannot edit any of that data yet. He begins his editing by checking out the
head of the jp.co.juicebot.jb7 branch into a workspace, so he can edit it:

$ mtn --db=abe.mtn --branch=jp.co.juicebot.jb7 checkout .

Monotone unpacks the set of files in the head revision’s manifest directly into Abe’s
current directory. (If he had specified something other than ‘.’ at the end, monotone would
have created that directory and unpacked the files into it.) Abe then opens up one of the
files, ‘src/apple.c’, and edits it:

$ vi src/apple.c

<Abe writes some apple-juice dispensing code>

The file ‘src/apple.c’ has now been changed. Abe gets up to answer a phone call, and
when he returns to his work he has forgotten what he changed. He can ask monotone for
details:

$ mtn diff

#

old_revision [2e24d49a48adf9acf3a1b6391a080008cbef9c21]

#

patch "src/apple.c"

from [2650ffc660dd00a08b659b883b65a060cac7e560]

to [e2c418703c863eabe70f9bde988765406f885fd0]

#

==

--- src/apple.c 2650ffc660dd00a08b659b883b65a060cac7e560

+++ src/apple.c e2c418703c863eabe70f9bde988765406f885fd0

@ -1,7 +1,10 @

#include "jb.h"

void

dispense_apple_juice()

{

- /* Fill this in please, Abe. */

+ spoutctl(APPLE_SPOUT, FLOW_JUICE, 1);

+ while (spoutctl(APPLE_SPOUT, POLL_JUICE, 1) == 0)

+ usleep (1000);

+ spoutctl(APPLE_SPOUT, FLOW_JUICE, 0);

}

Satisfied with his day’s work, Abe decides to commit.

$ mtn commit

mtn: beginning commit on branch ’jp.co.juicebot.jb7’

Abe neglected to provide a ‘--message’ option specifying the change log on the com-
mand line and the file ‘_MTN/log’ is empty because he did not document his changes there.
Monotone therefore invokes an external “log message editor” — typically an editor like vi
— with an explanation of the changes being committed and the opportunity to enter a log
message.

Chapter 2: Tutorial 33

polling implementation of src/apple.c

MTN:

MTN: --

MTN: Enter Log. Lines beginning with ‘MTN:’ are removed automatically

MTN:

MTN: format_version "1"

MTN:

MTN: new_manifest [b33cb337dccf21d6673f462d677a6010b60699d1]

MTN:

MTN: old_revision [2e24d49a48adf9acf3a1b6391a080008cbef9c21]

MTN:

MTN: patch "src/apple.c"

MTN: from [2650ffc660dd00a08b659b883b65a060cac7e560]

MTN: to [e2c418703c863eabe70f9bde988765406f885fd0]

MTN:

MTN: --

MTN:

Abe enters a single line above the explanatory message, saying “polling implementation
of src/apple.c”. He then saves the file and quits the editor. Monotone deletes all the lines
beginning with “MTN:” and leaves only Abe’s short message. Returning to the shell, Abe’s
commit completes:

mtn: committed revision 70decb4b31a8227a629c0e364495286c5c75f979

Abe then sends his new revision back to Jim:
$ mtn sync

mtn: connecting to jim-laptop.juicebot.co.jp

mtn: finding items to synchronize:

mtn: certs | keys | revisions

mtn: 8 | 2 | 2

mtn: bytes in | bytes out | revs in | revs out | revs written

mtn: 615 | 2822 | 0 | 1 | 0

mtn: successful exchange with jim-laptop.juicebot.co.jp

Beth does a similar sequence. First she syncs her database with Jim’s:
$ mtn --db=beth.mtn sync jim-laptop.juicebot.co.jp "jp.co.juicebot.jb7*"

mtn: setting default server to jim-laptop.juicebot.co.jp

mtn: setting default branch include pattern to ’jp.co.juicebot.jb7*’

mtn: setting default branch exclude pattern to ’’

mtn: connecting to jim-laptop.juicebot.co.jp

mtn: first time connecting to server jim-laptop.juicebot.co.jp:4691

mtn: I’ll assume it’s really them, but you might want to double-check

mtn: their key’s fingerprint: 9e9e9ef1d515ad58bfaa5cf282b4a872d8fda00c

mtn: warning: saving public key for jim@juicebot.co.jp to database

mtn: finding items to synchronize:

mtn: bytes in | bytes out | revs in | revs out | revs written

mtn: 4601 | 1239 | 2 | 0 | 1

mtn: verifying new revisions (this may take a while)

mtn: bytes in | bytes out | revs in | revs out | revs written

mtn: 4601 | 1285 | 2 | 0 | 2

mtn: successful exchange with jim-laptop.juicebot.co.jp

She checks out a copy of the tree from her database:
$ mtn --db=beth.mtn --branch=jp.co.juicebot.jb7 checkout .

She edits the file ‘src/banana.c’:
$ vi src/banana.c

<Beth writes some banana-juice dispensing code>

34 monotone documentation

and logs her changes in ‘_MTN/log’ right away so she does not forget what she has done
like Abe.

$ vi _MTN/log

* src/banana.c: Added polling implementation

Later, she commits her work. Monotone again invokes an external editor for her to edit
her log message, but this time it fills in the messages she’s written so far, and she simply
checks them over one last time before finishing her commit:

$ mtn commit

mtn: beginning commit on branch ’jp.co.juicebot.jb7’

mtn: committed revision 80ef9c9d251d39074d37e72abf4897e0bbae1cfb

And she syncs with Jim again:
$ mtn sync

mtn: connecting to jim-laptop.juicebot.co.jp

mtn: finding items to synchronize:

mtn: certs | keys | revisions

mtn: 12 | 3 | 3

mtn: bytes in | bytes out | revs in | revs out | revs written

mtn: 709 | 2879 | 0 | 1 | 0

mtn: successful exchange with jim-laptop.juicebot.co.jp

Chapter 2: Tutorial 35

2.11 Dealing with a Fork

Careful readers will note that, in the previous section, the JuiceBot company’s work was
perfectly serialized:

1. Jim did some work

2. Abe synced with Jim

3. Abe did some work

4. Abe synced with Jim

5. Beth synced with Jim

6. Beth did some work

7. Beth synced with Jim

The result of this ordering is that Jim’s work entirely preceded Abe’s work, which en-
tirely preceded Beth’s work. Moreover, each worker was fully informed of the “up-stream”
worker’s actions, and produced purely derivative, “down-stream” work:

1. Jim made revision 2e24d...

2. Abe changed revision 2e24d... into revision 70dec...

3. Beth derived revision 70dec... into revision 80ef9...

This is a simple, but sadly unrealistic, ordering of events. In real companies or work
groups, people often work in parallel, diverging from commonly known revisions and merging
their work together, sometime after each unit of work is complete.

Monotone supports this diverge/merge style of operation naturally; any time two revi-
sions diverge from a common parent revision, we say that the revision graph has a fork in
it. Forks can happen at any time, and require no coordination between workers. In fact
any interleaving of the previous events would work equally well; with one exception: if forks
were produced, someone would eventually have to run the merge command, and possibly
resolve any conflicts in the fork.

To illustrate this, we return to our workers Beth and Abe. Suppose Jim sends out an
email saying that the current polling juice dispensers use too much CPU time, and must be
rewritten to use the JuiceBot’s interrupt system. Beth wakes up first and begins working
immediately, basing her work off the revision 80ef9... which is currently in her workspace:

$ vi src/banana.c

<Beth changes her banana-juice dispenser to use interrupts>

Beth finishes and examines her changes:

36 monotone documentation

$ mtn diff

#

old_revision [80ef9c9d251d39074d37e72abf4897e0bbae1cfb]

#

patch "src/banana.c"

from [7381d6b3adfddaf16dc0fdb05e0f2d1873e3132a]

to [5e6622cf5c8805bcbd50921ce7db86dad40f2ec6]

#

==

--- src/banana.c 7381d6b3adfddaf16dc0fdb05e0f2d1873e3132a

+++ src/banana.c 5e6622cf5c8805bcbd50921ce7db86dad40f2ec6

@ -1,10 +1,15 @

#include "jb.h"

+static void

+shut_off_banana()

+{

+ spoutctl(BANANA_SPOUT, SET_INTR, 0);

+ spoutctl(BANANA_SPOUT, FLOW_JUICE, 0);

+}

+

void

-dispense_banana_juice()

+dispense_banana_juice()

{

+ spoutctl(BANANA_SPOUT, SET_INTR, &shut_off_banana);

spoutctl(BANANA_SPOUT, FLOW_JUICE, 1);

- while (spoutctl(BANANA_SPOUT, POLL_JUICE, 1) == 0)

- usleep (1000);

- spoutctl(BANANA_SPOUT, FLOW_JUICE, 0);

}

She commits her work:
$ mtn commit --message="interrupt implementation of src/banana.c"

mtn: beginning commit on branch ’jp.co.juicebot.jb7’

mtn: committed revision 8b41b5399a564494993063287a737d26ede3dee4

And she syncs with Jim:
$ mtn sync

Unfortunately, before Beth managed to sync with Jim, Abe had woken up and imple-
mented a similar interrupt-based apple juice dispenser, but his workspace is 70dec..., which
is still “upstream” of Beth’s.

$ vi apple.c

<Abe changes his apple-juice dispenser to use interrupts>

Thus when Abe commits, he unknowingly creates a fork:
$ mtn commit --message="interrupt implementation of src/apple.c"

Abe does not see the fork yet; Abe has not actually seen any of Beth’s work yet, because
he has not synchronized with Jim. Since he has new work to contribute, however, he now
syncs:

$ mtn sync

Now Jim and Abe will be aware of the fork. Jim sees it when he sits down at his desk
and asks monotone for the current set of heads of the branch:

Chapter 2: Tutorial 37

$ mtn heads

mtn: branch ’jp.co.juicebot.jb7’ is currently unmerged:

39969614e5a14316c7ffefc588771f491c709152 abe@juicebot.co.jp 2004-10-26T02:53:16

8b41b5399a564494993063287a737d26ede3dee4 beth@juicebot.co.jp 2004-10-26T02:53:15

Clearly there are two heads to the branch: it contains an un-merged fork. Beth will not
yet know about the fork, but in this case it doesn’t matter: anyone can merge the fork, and
since there are no conflicts Jim does so himself:

$ mtn merge

mtn: starting with revision 1 / 2

mtn: merging with revision 2 / 2

mtn: [source] 39969614e5a14316c7ffefc588771f491c709152

mtn: [source] 8b41b5399a564494993063287a737d26ede3dee4

mtn: common ancestor 70decb4b31a8227a629c0e364495286c5c75f979 abe@juicebot.co.jp 2004-

10-26T:02:50:01 found

mtn: trying 3-way merge

mtn: [merged] da499b9d9465a0e003a4c6b2909102ef98bf4e6d

mtn: your workspaces have not been updated

The output of this command shows Jim that two heads were found, combined via a 3-
way merge with their ancestor, and saved to a new revision. This happened automatically,
because the changes between the common ancestor and heads did not conflict. If there
had been a conflict, monotone would have invoked an external merging tool to help resolve
it, or Jim could have used the conflicts set of commands to resolve it (see Section 5.1.1
[Conflicts], page 83).

After merging, the branch has a single head again, and Jim updates his workspace.
$ mtn update

mtn: selected update target da499b9d9465a0e003a4c6b2909102ef98bf4e6d

mtn: updating src/apple.c to f088e24beb43ab1468d7243e36ce214a559bdc96

mtn: updating src/banana.c to 5e6622cf5c8805bcbd50921ce7db86dad40f2ec6

mtn: updated to base revision da499b9d9465a0e003a4c6b2909102ef98bf4e6d

The update command selected an update target — in this case the newly merged head
— and performed an in-memory merge between Jim’s workspace and the chosen target.
The result was then written to Jim’s workspace. If Jim’s workspace had any uncommitted
changes in it, they would have been merged with the update in exactly the same manner
as the merge of multiple committed heads.

Monotone makes very little distinction between a “pre-commit” merge (an update) and
a “post-commit” merge. Both sorts of merge use the exact same algorithm. The major
difference concerns the recoverability of the pre-merge state: if you commit your work first,
and merge after committing, then even if the merge somehow fails (due to difficulty in a
manual merge step, for instance), your committed state is still safe. If you update, on the
other hand, you are requesting that monotone directly modify your workspace, and while
monotone will try hard not to break anything, this process is inherently more open to error.
It is therefore recommended that you commit your work first, before merging.

If you have previously used another version control system, this may at first seem surpris-
ing; there are some systems where you are required to update, and risk the above problems,
before you can commit. Monotone, however, was designed with this problem in mind,
and thus always allows you to commit before merging. A good rule of thumb is to only
use update in workspaces with no local modifications, or when you actually want to work
against a different base revision (perhaps because finishing your change turns out to require
some fixes made in another revision, or because you discover that you have accidentally

38 monotone documentation

started working against a revision that contains unrelated bugs, and need to back out to a
working revision for testing).

Chapter 2: Tutorial 39

2.12 Branching and Merging

So by now you’re familiar with making changes, sharing them with other people, and inte-
grating your changes with their changes. Sometimes, though, you may want to make some
changes, and not integrate them with other people’s — or at least not right away. One way
to do this would be to simply never run mtn merge; but it would quickly become confusing
to try and keep track of which changes were in which revisions. This is where branches are
useful.

Continuing our example, suppose that Jim is so impressed by Beth’s work on banana
juice support that he assigns her to work on the JuiceBot 7’s surprise new feature: muffins.
In the mean time, Abe will continue working on the JuiceBot’s basic juice-related functions.

The changes required to support muffins are somewhat complicated, and Beth is worried
that her work might destabilize the program, and interfere with Abe’s work. In fact, she
isn’t even sure her first attempt will turn out to be the right approach; she might work on
it for a while and then decide it was a bad idea, and should be discarded. For all these
reasons, she decides that she will work on a branch, and then once she is satisfied with the
new code, she will merge back onto the mainline.

She decides that since main development is in branch jp.co.juicebot.jb7, she will use
branch jp.co.juicebot.jb7.muffins. So, she makes the first few edits to the new muffins
code, and commits it on a new branch by simply passing ‘--branch’ to commit:

$ mtn commit --branch=jp.co.juicebot.jb7.muffins --message=’autobake framework’

mtn: beginning commit on branch ’jp.co.juicebot.jb7.muffins’

mtn: committed revision d33caefd61823ecbb605c39ffb84705dec449857

That’s all there is to it — there is now a jp.co.juicebot.jb7.muffins branch, with
her initial checkin on it. She can make further checkins from the same workspace, and
they will automatically go to the muffins branch; if anyone else wants to help her work on
muffins, they can check out that branch as usual.

Of course, while Beth is working on the new muffins code, Abe is still making fixes to the
main line. Occasionally, Beth wants to integrate his latest work into the muffins branch, so
that her version doesn’t fall too far behind. She does this by using the propagate command:

$ mtn propagate jp.co.juicebot.jb7 jp.co.juicebot.jb7.muffins

mtn: propagating jp.co.juicebot.jb7 -> jp.co.juicebot.jb7.muffins

mtn: [source] da003f115752ac6e4750b89aaca9dbba178ac80c

mtn: [target] d0e5c93bb61e5fd25a0dadf41426f209b73f40af

mtn: common ancestor 853b8c7ac5689181d4b958504adfb5d07fd959ab jim@juicebot.co.jp 2004-

10-26T:12:44:23 found

mtn: trying 3-way merge

mtn: [merged] 89585b3c5e51a5a75f5d1a05dda859c5b7dde52f

The propagate merges all of the new changes on one branch onto another.

When the muffins code is eventually stable and ready to be integrated into the main line
of development, she simply propagates the other way:

$ mtn propagate jp.co.juicebot.jb7.muffins jp.co.juicebot.jb7

mtn: propagating jp.co.juicebot.jb7.muffins -> jp.co.juicebot.jb7

mtn: [source] 4e48e2c9a3d2ca8a708cb0cc545700544efb5021

mtn: [target] bd29b2bfd07644ab370f50e0d68f26dcfd3bb4af

mtn: common ancestor 652b1035343281a0d2a5de79919f9a31a30c9028 jim@juicebot.co.jp 2004-

10-26T:15:25:05 found

mtn: [merged] 03f7495b51cc70b76872ed019d19dee1b73e89b6

40 monotone documentation

Monotone always records the full history of all merges, and is designed to handle an
arbitrarily complicated graph of changes. You can make a branch, then branch off from
that branch, propagate changes between arbitrary branches, and so on; monotone will track
all of it, and do something sensible for each merge. Of course, it is still probably a good
idea to come up with some organization of branches and a plan for which should be merged
to which other ones. Monotone may keep track of graphs of arbitrary complexity — but
you will have more trouble. Whatever arrangement of branches you come up with, though,
monotone should be able to handle it.

If you are unsure of the name of a branch, you can list all branches using the ls branches
command. This is very useful, but if you create a lot of branches then the list can become
very long and unwieldy. To help this monotone has the suspend command which partially
hides revisions/branches you are no longer using. Further commits on hidden branches will
automatically unhide the branches.

For example, if Beth is now finished with the muffins branch, she can stop it from
cluttering the list of branches by suspending the last revision in that branch:

$ mtn ls branches

jp.co.juicebot.jb7

jp.co.juicebot.jb7.muffins

$ mtn heads

mtn: branch ’jp.co.juicebot.jb7.muffins’ is currently merged:

4e48e2c9a3d2ca8a708cb0cc545700544efb5021 beth@juicebot.co.jp 2007-07-08T02:17:37

$ mtn suspend 4e48e2c9a3d2ca8a708cb0cc545700544efb5021

$ mtn ls branches

jp.co.juicebot.jb7

Chapter 2: Tutorial 41

2.13 Network Service Revisited

Up until now, Jim has been using his laptop and database as a sort of “central server” for
the company; Abe and Beth have been syncing with Jim, and learning of each other’s work
via Jim’s database. This has worked fine while the product has been in early development;
Jim has good network connectivity in Japan, and has been staying home concentrating on
programming. He has been able to leave his laptop connected and running all the time,
while his employees in different time-zones work and sync their databases. This is now
starting to change, and two problems are starting to cause occasional difficulties.
• First, Jim is finding that he has to spend more of his time travelling, demonstrating the

new juicebot features to customers; thus his laptop is spending more time disconnected
from the network, or connected at dynamic addresses where it’s not convenient for Abe
and Beth to find him and sync.
This doesn’t prevent them doing any work, but it does have some uncomfortable con-
sequences: they’re more likely to have to manually merge conflicting changes when
they finally sync up and discover they’ve both come up with slightly different fixes
for the same bug in the meantime, and they’re more exposed to loss of work if one of
them suffers a disk failure before they’ve had a chance to sync that work with another
database.

• Second, because Jim has been using the one database file both for his own local work,
and for serving to the others in the team, he occasionally finds that the monotone serve
process (busy syncing with Abe or Beth) has a lock on the database, while he’s trying
to do local work like updates or commits.
The level of project activity is picking up, and there are more and more changes to be
synced in the narrower window of time while Jim is connected. He finds he sometimes
needs to take down the server process to do this local work, further exacerbating the
first problem.

The juicebot team are resourceful, and by now quite used to working independently.
While Jim has been away travelling, Abe and Beth have come up with their own solution
to the first problem: they’ll run servers from their databases, setting them up just like Jim
did previously. That way, if Jim’s database is offline, either Beth or Abe can run the serve
command and provide access for the other to sync with. Beth also has the idea to create
a second database for the serve process, and to sync her development database with that
server locally, avoiding locking contention between multiple monotone processes on the one
database file.

When Jim reappears, the next person to sync with him will often pass him information
about both employees’ work that they’ve sync’ed with each other in the meantime, just as
he used to do. In fact, Jim now finds it more convenient to initiate the sync with one of the
other servers when he has a spare moment and dynamic connectivity from a hotel room or
airport. Changes will flow between servers automatically as clients access them and trade
with one another.

This gets them by for a while, but there are still occasional inconveniences. Abe and
Beth live in very different time-zones, and don’t always have reliable network connectivity,
so sometimes Jim finds that neither of them is online to sync with when he has the chance.
Jim now also has several customers interested in beta-testing the new code, and following
changes as the bugs and issues they report are addressed.

42 monotone documentation

Jim decides it’s time for a permanent server they can all sync with; this way, everyone
always knows where to go to get the latest changes, and people can push their changes out
without first calling their friends and making sure that they have their servers running.

Jim has rented some web server space on a service provider’s shared system for the
JuiceBot Inc. public website, www.juicebot.co.jp; he thinks this server will be a good
place to host the central monotone server too. He sets up a new monotone database on the
server, generates a new key specially for the server (so he doesn’t have to expose his own
development private key on the shared system), and loads in the team-members’ keys:

$ mtn --db=server.mtn db init

$ mtn genkey monotone-server@www.juicebot.co.jp

mtn: generating key-pair ’monotone-server@www.juicebot.co.jp’

enter passphrase for key ID [monotone-server@www.juicebot.co.jp] : <Jim enters a new passphrase>

confirm passphrase for key ID [monotone-server@www.juicebot.co.jp]: <Jim confirms the passphrase>

mtn: storing key-pair ’monotone-server@www.juicebot.co.jp’ in /home/jim/.monotone/keys

$ cat abe.pubkey beth.pubkey jim.pubkey | mtn --db=server.mtn read

mtn: read 3 packets

For the team members, he sets up the permissions files on the server much like before
— except that of course he needs to also grant his jim@juicebot.co.jp key permission
to access the new server. For the beta-testers, Jim wants to allow them read-only ac-
cess just to the main JuiceBot 7 development line, but not to any of the sub-branches
where other experimental development is going on. He adds some lines at the top of the
‘~/.monotone/read-permissions’ on the server, above the broader permissions given to
team-members. See the Chapter 6 [Hook Reference], page 155 for get_netsync_read_
permitted for more details; the resulting file looks like this:

comment "Provide beta-testers with specific read-only access"

pattern "jp.co.juicebot.jb7"

allow "beta1@juicebot.co.jp"

allow "beta2@juicebot.co.jp"

continue "true"

comment "Fall-through, and allow staff access to all branches"

pattern "*"

allow "abe@juicebot.co.jp"

allow "beth@juicebot.co.jp"

allow "jim@juicebot.co.jp"

Jim could log in and start the monotone process manually from his shell account on the
server, perhaps under a program like screen to let it stay running while he’s away. This
would be one way of giving it the server-key’s passphrase each startup, but he wants to
make sure that the server is up all the time; if the host reboots while he’s travelling and the
monotone server is down until he next logs in, things aren’t much better than before. For
the server to start automatically each time, he’ll need to use the get_passphrase hook in
the server’s ‘monotonerc’ file again.

Because he’s running on a shared server, Jim needs to be a little more restrictive about
which interfaces and addresses his new server process will listen on. He should only accept
connections at the address used for his website, because some of the provider’s other cus-
tomers might also want to publish their own monotone projects on this host. Jim uses the
‘--bind=address:port ’ argument like so:

$ mtn --db=server.mtn --bind=www.juicebot.co.jp serve

Chapter 2: Tutorial 43

This will start monotone listening on the default port (4691), but only on the IP address
associated with www.juicebot.co.jp. Jim can do this because his hosting provider has
given him a dedicated IP address for his website. If the hosting provider offered only a
single shared IP address belonging to the server, each customer could bind a different port
number on that address.

While he’s first testing the setup, Jim uses ‘--bind=localhost:1234’. This causes the
monotone process to listen only to port 1234 on the loopback interface 127.0.0.1, which is
not accessible from the network, so Jim doesn’t expose an open port to the rest of the world
until he’s satisfied with the permissions configuration. You can cause monotone to listen
on all interfaces on port 1234 by leaving out the address part like ‘--bind=:1234’.

When he’s satisfied the server is set up correctly, Jim does an initial sync with the new
database, filling it with all the revision history currently on his laptop. While Jim has been
busy setting up the server, Abe and Beth have kept working; the server will catch up with
their latest changes when they next sync, too.

All of the team members now want to sync with the new monotone server by default.
Previously, they had been syncing with Jim’s laptop by default, even if they occasionally
specified another team-member’s server on the command line when Jim was away, because
monotone had remembered the first server and branch patterns used in database Section 3.9
[Vars], page 61. These vars can be seen as follows:

$ mtn list vars

database: default-exclude-pattern

database: default-include-pattern jp.co.juicebot.jb7*

database: default-server jim-laptop.juicebot.co.jp

known-servers: jim-laptop.juicebot.co.jp 9e9e9ef1d515ad58bfaa5cf282b4a872d8fda00c

known-servers: abe-laptop.juicebot.co.jp a2bb16a183247af4133621f7f5aefb21a9d13855

known-servers: www.juicebot.co.jp 120a99ch93b4f174432c13d3e3e9f2234aa92612

The team members can reset their local database vars accordingly:
$ mtn set database default-server www.juicebot.co.jp

With their new server, the juicebot team have gained the convenience of a readily avail-
able common point of reference for syncs. However, they also know that this is there only
as a convenience, and doesn’t prevent them working as they did before:
• The team members can still sync with each other if needed.

Hopefully, their new server won’t ever be down, but sometimes they might be working
together while away from ready network access — fixing up the last few issues and
finalising presentation materials while travelling to a sales conference, for example.
The server will learn of these changes on the next sync.

• The team members continue to discover multiple heads and changes that need merging,
as before. Each team member can merge the heads, and will produce the same revision
id if they merge to the same result.
They now develop a new habit out of courtesy, though — they try not to leave multiple
heads and unmerged changes on the server, at least not for long. This saves them from
repeating work, and also helps prevent confusion for the beta-testers. When each team
member is ready to sync, they develop the habit of doing a pull from the server first.
If new revisions were received from the server, they first merge their new revisions with
the head(s) from the server, and finally sync to publish their merged changes as one. If
the last sync happens to pull in new revisions again from the server, it means someone

44 monotone documentation

else has deposited new work at the same time, and another merge and sync would
probably be polite.

• Jim knows he doesn’t have to keep a special backup of the new server’s contents; if the
server should fail, all the contents of its database can be found amongst the other team
members (especially because no commits are done on the server itself).
He does, however, take a copy of the server’s private key, so he can restore that if
necessary.

• In fact, Jim realises that he can now commit a copy of the web site’s current contents
into monotone on a new branch, jp.co.juicebot.www, and keep a backup of that
content too.
Now he can use monotone to work on the website offline, and let other team members
add and edit the content; he can also preview changes locally before updating the
production content. He keeps a workspace checkout of this content in the webroot on
the server, and runs a monotone update in there when he wants to bring the public
web site up to date. Later, he’ll think about using monotone’s Section 3.8 [Quality
Assurance], page 60 mechanisms and Event Notification Section 6.1 [Hooks], page 156,
so that the web server can update itself automatically when appropriate new revisions
are received.

• Jim also knows that even if someone should break into the shared hosting server and
tamper with the database, they won’t be able to inject malicious code into the project,
because all revisions are signed by the team members, and he has set his [Trust Eval-
uation Hooks], page 164 so he doesn’t trust the server key for signing revisions.
In monotone, the important trust consideration is on the signed content, rather than
on the replication path by which that content arrived in your database.

Chapter 3: Advanced Uses 45

3 Advanced Uses

This chapter covers slightly less common aspects of using monotone. Some users of mono-
tone will find these helpful, though possibly not all. We assume that you have read through
the taxonomy and tutorial, and possibly spent some time playing with the program to
familiarize yourself with its operation.

46 monotone documentation

3.1 Other Transports

Monotone’s database synchronization system is based on a protocol called netsync. By
default, monotone transports this protocol over a plain TCP connection, but this is not
the only transport monotone can use. It can also transport netsync through SSH, or any
program which can provide a full-duplex connection over stdio.

When a monotone client initiates a push, pull, or sync operation, it parses the first
command-line argument as a URI and calls a Lua hook to convert that URI into a connection
command. If the Lua hook returns a connection command, monotone spawns the command
locally and speaks netsync over a pipe connected to the command’s standard I/O handles.

If the Lua hook does not return a connection command, monotone attempts to parse
the command-line argument as a TCP address – a hostname with an optional port number
– connects a TCP socket the host and port, and speaks netsync over the socket.

By default, monotone understands two URI schemes:
1. SSH URIs, of the form ssh://[user@]hostname[:port]/path/to/db.mtn , to syn-

chronize between private databases on hosts accessible only through SSH. (These
paths are absolute; to refer to a path relative to a home directory, use ssh://host-
part/~/relative/path.mtn or ssh://host-part/~user/relative/path.mtn .)

2. File URIs, of the form file:/path/to/db.mtn , to synchronize between local databases.

ssh: and file: are currently not supported on the native Win32 platform; they are
supported on Cygwin and all other platforms.

In the case of SSH URIs, the ssh program must be in your command execution path,
either $PATH on Unix-like systems or %PATH% on Windows systems. Monotone will
execute ssh as a subprocess, running mtn serve on the other end of the SSH connection.
You will need mtn to be in the command execution path of the remote shell environment.

In the case of File URIs, mtn is run locally, so must be in your command execution path.
In both cases, the database specified in the URI needs to exist already, and will be locked

for the duration of the synchronization operation. Therefore, it must also be writable, even
when monotone isn’t going to modify it, as it is the case for pull. Also note that monotone’s
default transport authentication is disabled over these transports, to reduce the complexity
of configuration and eliminate redundant protocol cost.

Additional URI schemes can be supported by customization of the Lua hooks get_
netsync_connect_command and use_transport_auth. For details on these hooks, see
[Netsync Transport Hooks], page 162.

Chapter 3: Advanced Uses 47

3.2 Selectors

Revisions can be specified on the monotone command line, precisely, by entering the entire
40-character hexadecimal sha1 code. This can be cumbersome, so monotone also allows
a more general syntax called “selectors” which is less precise but more “human friendly”.
Any command which expects a precise revision ID can also accept a selector in its place; in
fact a revision ID is just a special type of selector which is very precise.

Simple examples

Some selector examples are helpful in clarifying the idea:

a432 Revision IDs beginning with the string a432

graydon@pobox.com/2004-04
Revisions written by graydon@pobox.com in April 2004.

"jrh@example.org/2 weeks ago"
Revisions written by jrh@example.org 2 weeks ago.

graydon/net.venge.monotone.win32/yesterday
Revisions in the net.venge.monotone.win32 branch, written by graydon, yes-
terday.

A moment’s examination reveals that these specifications are “fuzzy” and indeed may
return multiple values, or may be ambiguous. When ambiguity arises, monotone will inform
you that more detail is required, and list various possibilities. The precise specification of
selectors follows.

Selectors in detail

A selector is a combination of a selector type, which is a single ASCII character, followed
by a : character and a selector string. All selectors strings except for selector type c are
just values. The value is matched against identifiers or certs, depending on its type, in an
attempt to match a single revision. Selectors are matched as prefixes. The current set of
selection types are:

Generic cert selector
Uses selector type c. The selector string has the syntax name or name=value.
The former syntax will select any revision that has a cert with that name,
regardless of value; the latter will match any revision that has a cert with that
name and value. Values to match for can have shell wildcards. For example,
c:tag matches all revisions that have a tag, and c:tag=monotone-0.25 will
match the revision tagged monotone-0.25. (See also the t selector below.)

Author selection
Uses selector type a. For example, a:graydon matches author certs where the
cert value contains graydon.

Branch selection
Uses selector type b. For example, b:net.venge.monotone matches branch
certs where the cert value is net.venge.monotone. Values to match for can
have shell wildcards. If you give a bare b: monotone will require you to be in a
workspace, and will use the branch value recorded in your MTN/options file.

48 monotone documentation

Heads selection
Uses selector type h. For example, h:net.venge.monotone matches branch
certs where the cert value is net.venge.monotone and the associated revision
is a head revision on that branch. Values to match for can have shell wildcards
like the branch selector. If you give a bare h: monotone will require you to be
in a workspace, and use the branch recorded in your MTN/options file.

Date selection
Uses selector type d. For example, d:2004-04 matches date certs where the
cert value begins with 2004-04. This selector also accepts expanded date syntax
(see below).

"Earlier or equal than" selection
Uses selector type e. For example, e:2004-04-25 matches date certs where the
cert value is less or equal than 2004-04-25T00:00:00. If the time component is
unspecified, monotone will assume 00:00:00. This selector also accepts expanded
date syntax (see below)

"Later than" selection
Uses selector type l. For example, l:2004-04-25 matches date certs where the
cert value is strictly greater than 2004-04-25T00:00:00. If the time compo-
nent is unspecified, monotone will assume 00:00:00. This selector also accepts
expanded date syntax (see below)

Identifier selection
Uses selector type i. For example, i:0f3a matches revision IDs which begin
with 0f3a.

Parent selection
Uses selector type p. For example, p:0f3a matches the revision IDs which are
the parent of the revision ID which begins with 0f3a. If you give a bare p:,
monotone will require you to be in a workspace, and query the parent of the
base workspace revision.

Tag selection
Uses selector type t. For example, t:monotone-0.11 matches tag certs where
the cert value begins with monotone-0.11. Values to match for can have shell
wildcards.

Further selector types may be added in the future.

Composite selectors

Selectors may be combined with the / character. The combination acts as database inter-
section (or logical and). For example, the selector a:graydon/d:2004-04 can be used to
select a revision which has an author cert beginning with graydon as well as a date cert
beginning with 2004-04. The / character can be escaped using the \ character if necessary.

Selector expansion

Before selectors are passed to the database, they are expanded using a Lua hook: expand_
selector. The default definition of this hook attempts to guess a number of common

Chapter 3: Advanced Uses 49

forms for selection, allowing you to omit selector types in many cases. For example, the
hook guesses that the typeless selector jrh@example.org is an author selector, due to its
syntactic form, so modifies it to read a:jrh@example.org. This hook will generally assign a
selector type to values which “look like” partial hex strings, email addresses, branch names,
or date specifications. For the complete source code of the hook, see Chapter 6 [Hook
Reference], page 155.

Expanding dates

All date-related selectors (d, e, l) support an English-like syntax similar to CVS. This
syntax is expanded to the numeric format by a Lua hook: expand_date. The allowed date
formats are:

now Expands to the current date and time.

today Expands to today’s date. e and l selectors assume time 00:00:00

yesterday Expands to yesterday’s date. e and l selectors assume time 00:00:00

<number> {minute|hour} <ago>
Expands to today date and time, minus the specified number of minutes|hours.

<number> {day|week|month|year} <ago>
Expands to today date, minus the specified number of days|weeks|months|years.
e and l selectors assume time 00:00:00

<year>-<month>[-day[Thour:minute:second]]
Expands to the supplied year/month. The day and time component are op-
tional. If missing, e and l selectors assume the first day of month and time
00:00:00. The time component, if supplied, must be complete to the second.

For the complete source code of the hook, see Chapter 6 [Hook Reference], page 155.

Typeless selection

If, after expansion, a selector still has no type, it is matched as a special “unknown” selector
type, which will match either a tag, an author, or a branch. This costs slightly more
database access, but often permits simple selection using an author’s login name and a
date. For example, the selector graydon/net.venge.monotone.win32/yesterday would
pass through the selector graydon as an unknown selector; so long as there are no branches
or tags beginning with the string graydon this is just as effective as specifying a:graydon.

50 monotone documentation

3.3 Restrictions

Several monotone commands accept optional pathname... arguments in order to establish a
“restriction”. Restrictions are used to limit the files and directories these commands exam-
ine for changes when comparing the workspace to the revision it is based on. Restricting a
command to a specified set of files or directories simply ignores changes to files or directories
not included by the restriction.

The following commands all support restrictions using optional pathname... arguments:
• status

• diff

• revert

• commit

• list known

• list unknown

• list ignored

• list missing

• list changed

Including either the old or new name of a renamed file or directory will cause both names
to be included in a restriction. If in doubt, the status command can be used to “test” a
set of pathnames to ensure that the expected files are included or excluded by a restriction.

Commands which support restrictions also support the ‘--depth=n ’ option, where n
specifies the maximum number of directories to descend. For example, n=0 disables recur-
sion, n=1 means descend at most one directory, and so on.

The update command does not allow for updates to a restricted set of files, which may
be slightly different than other version control systems. Partial updates don’t really make
sense in monotone, as they would leave the workspace based on a revision that doesn’t exist
in the database, starting an entirely new line of development.

Subdirectory restrictions

The restrictions facility also allows commands to operate from within a subdirectory of
the workspace. By default, the entire workspace is always examined for changes. However,
specifying an explicit "." pathname to a command will restrict it to the current subdirectory.
Note that this is quite different from other version control systems and may seem somewhat
surprising.

The expectation is that requiring a single "." to restrict to the current subdirectory
should be simple to use. While the alternative, defaulting to restricting to the current sub-
directory, would require a somewhat complicated ../../.. sequence to remove the restriction
and operate on the whole tree.

This default was chosen because monotone versions whole project trees and generally
expects to commit all changes in the workspace as a single atomic unit. Other version
control systems often version individual files or directories and may not support atomic
commits at all.

When working from within a subdirectory of the workspace all paths specified to mono-
tone commands must be relative to the current subdirectory.

Chapter 3: Advanced Uses 51

Finding a workspace

Monotone only stores a single ‘_MTN’ directory at the root of a workspace. Because of this,
a search is done to find the ‘_MTN’ directory in case a command is executed from within a
subdirectory of a workspace. Before a command is executed, the search for a workspace
directory is done by traversing parent directories until an ‘_MTN’ directory is found or the
filesystem root is reached. Upon finding an ‘_MTN’ directory, the ‘_MTN/options’ file is
read for default options. The ‘--root’ option may be used to stop the search early, before
reaching the root of the physical filesystem. The ‘--no-workspace’ option may be used to
prevent the search entirely.

Many monotone commands don’t require a workspace and will simply proceed with no
default options if no ‘_MTN’ directory is found. However, some monotone commands do
require a workspace and will fail if no ‘_MTN’ directory can be found.

The checkout, clone and setup commands create a new workspace and initialize a new
‘_MTN/options’ file based on their current option settings.

52 monotone documentation

3.4 Scripting

People often want to write programs that call monotone — for example, to create a graphical
interface to monotone’s functionality, or to automate some task. For most programs, if you
want to do this sort of thing, you just call the command line interface, and do some sort of
parsing of the output. Monotone’s output, however, is designed for humans: it’s localized,
it tries to prompt the user with helpful information depending on their request, if it detects
that something unusual is happening it may give different output in an attempt to make
this clear to the user, and so on. As a result, it is not particularly suitable for programs to
parse.

Rather than trying to design output to work for both humans and computers, and serving
neither audience well, we elected to create a separate interface to make programmatically
extracting information from monotone easier. The command line interface has a command
automate; this command has subcommands that print various sorts of information on stan-
dard output, in simple, consistent, and easily parseable form.

For details of this interface, see Section 5.9 [Automation], page 107.

3.5 Inodeprints

Fairly often, in order to accomplish its job, monotone has to look at your workspace and
figure out what has been changed in it since your last commit. Commands that do this
include status, diff, update, commit, and others. There are two different techniques it
can use to do this. The default, which is sufficient for most projects, is to simply read every
file in the workspace, compute their sha1 hash, and compare them to the hashes monotone
has stored. This is very safe and reliable, and turns out to be fast enough for most projects.
However, on very large projects, ones whose source trees are many megabytes in size, it can
become unacceptably slow.

The other technique, known as inodeprints, is designed for this situation. When running
in inodeprints mode, monotone does not read the whole workspace; rather, it keeps a cache
of interesting information about each file (its size, its last modification time, and so on), and
skips reading any file for which these values have not changed. This is inherently somewhat
less safe, and, as mentioned above, unnecessary for most projects, so it is disabled by default.

If you do determine that it is necessary to use inodeprints with your project, it is simple
to enable them. Simply run mtn refresh_inodeprints; this will enable inodeprints mode
and generate an initial cache. If you ever wish to turn them off again, simply delete the file
‘_MTN/inodeprints’. You can at any time delete or truncate the ‘_MTN/inodeprints’ file;
monotone uses it only as a cache and will continue to operate correctly.

Normally, instead of enabling this up on a per-workspace basis, you will want to simply
define the use_inodeprints hook to return true; this will automatically enable inodeprints
mode in any new workspaces you create. See Chapter 6 [Hook Reference], page 155 for
details.

Chapter 3: Advanced Uses 53

3.6 Merge Conflicts

Several different types of conflicts may be encountered when merging two revisions using
the database merge commands merge, explicit_merge, propagate and merge_into_dir
or when using the workspace merge commands update, pluck and merge_into_workspace.

The show_conflicts and automate show_conflicts commands can be used to list
conflicts between database revisions which would be encountered by the database merge
commands. Unfortunately, these commands can’t yet list conflicts between a database
revision and the current workspace.

In addition, the conflicts set of commands can be used to specify resolutions for
some conflicts. The resolutions are stored in a file, and given to the merge command
via the --resolve-conflicts-file=filename or --resolve-conflicts option; see See
Section 5.1.1 [Conflicts], page 83.

The merge command normally will perform as many merges as necessary to merge
all current heads of a branch. However, when --resolve-conflicts-file is given, the
conflicts and their resolutions apply only to the first merge, so the subsequent merges are
not done; the merge command must be repeated, possibly with new conflicts and resolutions,
to merge the remaining heads.

If conflicts supports resolving a particular conflict, that is the simplest way to resolve
it. Otherwise, resolving the different types of conflicts is accomplished by checking out one
of the conflicting revisions, making changes as described below, committing these changes
as a new revision and then running the merge again using this new revision as one of the
merge parents. This process can be repeated as necessary to get two revisions into a state
where they will merge cleanly, or with a minimum of file content conflicts.

The possible conflict resolutions are discussed with each conflict in the following sections.

3.6.1 Conflict Types

Monotone versions both files and directories explicitly and it tracks individual file and
directory identity from birth to death so that name changes throughout the full life-cycle
can be tracked exactly. Partly because of these qualities, monotone also notices several
types of conflicts that other version control systems may not.

The two most common conflicts are described first, then all other possible conflicts.

File Content Conflict

This type of conflict is generally the one encountered most commonly and represents con-
flicting changes made to lines of text within two versions of a single file.

Monotone does not generally use CVS style conflict markers for content conflicts. Instead
it makes the content of both conflicting files and the content of their common ancestor
available for interactive use during the merge with your favorite merge tool. See the merge3
hook for more information.

Alternatively, rather than using a merge tool it is possible to make further changes to
one or both of the conflicting file versions so that they will merge cleanly. This can also
be a very helpful strategy if the merge conflicts are due to sections of text in the file being
moved from one location to another. Rather than struggling to merge such conflicting
changes with a merge tool, similar rearrangements can be made to one of the conflicting
files before redoing the merge.

54 monotone documentation

Finally, you can use your favorite merge tool asychronously with the merge, and spec-
ify the result file in the conflicts file, using the conflicts command (see Section 5.1.1
[Conflicts], page 83):

mtn conflicts resolve_first user filename

Duplicate Name Conflict

A duplicate name conflict occurs when two distinct files or directories have been given the
same name in the two merge parents. This can occur when each of the merge parents
adds a new file or directory with the conflicting name, or when one parent adds a new file
or directory with the conflicting name and the other renames an existing file or directory
to the conflicting name, or when both parents rename an existing file or directory to the
conflicting name.

In earlier versions of monotone (before version 0.39) this type of conflict was referred
to as a rename target conflict although it doesn’t necessarily have anything to do with
renames.

There are two main situations in which duplicate name conflicts occur:

• Two people both realize a new file should be added, and commit it. In this case,
the files have the right name and the right contents, but monotone reports a conflict
because they were added separately.

• Two people each decide to add new files with different content, and accidently pick the
same name.

These conflicts are reported when someone tries to merge the two revisions containing
the new files.

Same file

For the first case, the conflict is resolved by dropping one file, using conflicts commands.
The contents should be manually merged, in case they are slightly different. Typically, a
user will have one of the files in their current workspace; the other can be retrieved via
automate get_file_of; the revision id is shown in the merge error message. The process
can be confusing; here’s a detailed example.

Suppose Beth and Abe each commit a new file ‘checkout.sh’. When Beth attempts to
merge the two heads, she gets a message like:

mtn: 2 heads on branch ’testbranch’

mtn: [left] ae94e6677b8e31692c67d98744dccf5fa9ccffe5

mtn: [right] dfdf50b19fb971f502671b0cfa6d15d69a0d04bb

mtn: conflict: duplicate name ’checkout.sh’

mtn: added as a new file on the left

mtn: added as a new file on the right

mtn: error: merge failed due to unresolved conflicts

The file labeled right is the file in Beth’s workspace. To start the conflict resolution
process, Beth first saves the list of conflicts:

mtn conflicts store

In order to merge Beth’s and Abe’s file versions, Beth retrieves a copy of Abe’s file:
mtn automate get_file_of checkout.sh \

--revision=ae94e6677b8e31692c67d98744dccf5fa9ccffe5 \

> _MTN/resolutions/checkout.sh-abe

Chapter 3: Advanced Uses 55

Now Beth manually merges (using her favorite merge tool) ‘checkout.sh’ and
‘_MTN/resolutions/checkout.sh-abe’, leaving the results in ‘_MTN/resolutions/checkout.sh-merge’
(not in her copy).

Then Beth specifies the conflict resolution, and finishes the merge:
mtn conflicts resolve_first_left drop

mtn conflicts resolve_first_right user _MTN/resolutions/checkout.sh-merge

mtn merge --resolve-conflicts-file=_MTN/conflicts

mtn conflicts clean

mtn update

When Abe later syncs and updates, he will get the merged version.

Different files

The second case, where two different files accidently have the same name, is resolved by
renaming one or both of them.

Suppose Beth and Abe each start working on different thermostat models (say Honeywell
and Westinghouse), but they both name the file ‘thermostat’. When Beth attempts to
merge, she will get the same error message as in the first case. When she retrieves Abe’s
file, she will see that they should be different files. So she renames her file, merges, and
updates:

mtn conflicts store

mtn conflicts resolve_first_left rename thermostat-westinghouse

mtn conflicts resolve_first_right rename thermostat-honeywell

mtn merge --resolve-conflicts-file=_MTN/conflicts

mtn conflicts clean

mtn update

Now she has her file in ‘thermostat-honeywell’, and Abe’s in ‘thermostat-westinghouse’.

Missing Root Conflict

Monotone’s merge strategy is sometimes referred to as die-die-die merge, with reference to
the fact that when a file or directory is deleted there is no means of resurrecting it. Merging
the deletion of a file or directory will always result in that file or directory being deleted.

A missing root conflict occurs when some directory has been moved to the root directory
in one of the merge parents and has been deleted in the other merge parent. Because of
die-die-die merge the result will not contain the directory that has been moved to the root.

Missing root conflicts should be very rare because it is unlikely that a project’s root
directory will change. It is even more unlikely that a project’s root directory will be changed
to some other directory in one merge parent and that this directory will also be deleted in
the other merge parent. Even still, a missing root directory conflict can be easily resolved
by moving another directory to the root in the merge parent where the root directory was
previously changed. Because of die-die-die merge, no change to resolve the conflict can be
made to the merge parent that deleted the directory which was moved to the root in the
other merge parent.

See the pivot_root command for more information on moving another directory to the
project root.

conflicts does not yet support resolving this conflict.

56 monotone documentation

Invalid Name Conflict

Monotone reserves the name ‘_MTN’ in a workspace root directory for internal use and treats
this name as illegal for a versioned file or directory in the project root. This name is legal
for a versioned file or directory as long as it is not in the project root directory.

An invalid name conflict occurs when some directory is moved to the project root in one
of the merge parents and a file or directory that exists in this new root directory is renamed
to ‘_MTN’ or a new file or directory is added with the name ‘_MTN’ to this directory in the
other merge parent.

Invalid name conflicts should be very rare because it is unlikely that a project’s root
directory will change. It is even more unlikely that a project’s root directory will change
and the new root directory will contain a file or directory named ‘_MTN’. Even still, an invalid
name conflict can be easily resolved in several different ways. A different root directory can
be chosen, the offending ‘_MTN’ file or directory can be renamed or deleted, or it can be
moved to some other subdirectory in the project.

See the pivot_root command for more information on moving another directory to the
project root.

conflicts does not yet support resolving this conflict.

Directory Loop Conflict

A directory loop conflict occurs when one directory is moved under a second in one of the
merge parents and the second directory is moved under the first in the other merge parent.

Directory loop conflicts should be rare but can be easily resolved by moving one of the
conflicting directories out from under the other.

conflicts does not yet support resolving this conflict.

Orphaned Node Conflict

An orphaned node conflict occurs when a directory and all of its contents are deleted in one
of the merge parents and further files or directories are added to this deleted directory, or
renamed into it, in the other merge parent.

Orphaned node conflicts do happen occasionally but can be easily resolved by renaming
the orphaned files or directories out of the directory that has been deleted and into another
directory that exists in both merge parents, or that has been added in the revision containing
the orphaned files or directories.

conflicts does not yet support resolving this conflict.

Multiple Name Conflict

A multiple name conflict occurs when a single file or directory has been renamed to two
different names in the two merge parents. Monotone does not allow this and requires that
each file and directory has exactly one unique name.

Multiple name conflicts do happen occasionally but can be easily resolved by renaming
the conflicting file or directory in one or both of the merge parents so that both agree on
the name.

conflicts does not yet support resolving this conflict.

Chapter 3: Advanced Uses 57

In earlier versions of monotone (those before version 0.39) this type of conflict was
referred to as a name conflict.

Attribute Conflict

An attribute conflict occurs when a versioned attribute on a file or directory is set to
two different values by the two merge parents or if one of the merge parents changes the
attribute’s value and the other deletes the attribute entirely.

Attribute conflicts may happen occasionally but can be easily resolved by ensuring that
the attribute is set to the same value or is deleted in both of the merge parents. Attributes
are not merged using the die-die-die rules and may be resurrected by simply setting their
values.

conflicts does not yet support resolving this conflict.

58 monotone documentation

3.7 Workspace Collisions

Sometimes when you work on a project, several people make similar changes in parallel.
When these changes occur in an existing file that is known to both sides, monotone can
merge the edits when the two revisions meet (possibly after getting help to resolve content
conflicts). Other kinds of changes cannot be merged so readily, especially ones that involve
files in your workspace that are not tracked by monotone.

Workspace collisions can happen for many reasons; some examples include:
• You have a file in your workspace that is unknown to monotone (you have not added

it). Someone else has added and commited a different file with the same name. If you
try to update your workspace to their revision, the added file in the incoming revision
will collide with your file over use of the name.

• There is a directory which contains both versioned and unversioned files (perhaps ver-
sioned sources, and unversioned object files built from the sources). Someone else
commits a revision that drops the versioned files and the containing directory. If you
try to update to this revision, your directory will still contain the untracked files, and
therefore cannot be deleted.

• You have an unversioned file in your workspace, and you’re trying to update to a
revision that adds a directory with the same name.

These examples describe collisions on update; the same kinds of things can happen with
other commands that can bring changes into your workspace, such as checkout or pluck
too.

Monotone is careful to avoid hitting such collisions. Before changing the workspace, it
will try and detect the possibility of collisions, and the command will fail, warning you
about the names that collide. The file content in the database is safe and can be recovered
at any time, so monotone is conservative and will refuse to destroy the information in your
workspace contents.

However, monotone cannot detect all kinds of failures and collisions in your workspace.
For example:
• On some systems with case-insensitive and/or internationalised filesystems, names that

look distinct to monotone may in fact be considered the same by the underlying plat-
form.

• If some other program is creating files in the workspace at the same time as monotone,
the colliding file might be created after the collision check at the start.

• Other kinds of unpredictable system errors, like permissions problems or disk full con-
ditions, might cause failures when monotone is rearranging the workspace content.

These are all hopefully very rare occurrences. If such a filesystem error does cause a
failure part-way during a workspace alteration, monotone will stop immediately rather than
risk potentially doing further damage, and your workspace may be left in an incomplete
state. If this happens, you will need to resolve the issue and clean up the workspace
manually. If you need to do so, understanding how monotone manipulates the workspace
is helpful.

When monotone applies renaming changes to the workspace, each file is first detached
from the workspace under its old name, then attached under the new name. This is done

Chapter 3: Advanced Uses 59

by moving it to the ‘_MTN/detached’ directory. Newly added files are created here before
being moved into place, too. While inside ‘_MTN/detached’, the file or directory is named as
a simple integer (these numbers come from monotone’s internal identification of the node).
If the detached node is a directory, the directory is moved with all of its contents (including
unversioned files); this can help identify which directory has been detached.

If a previous workspace alteration failed part-way, the ‘_MTN/detached’ directory will
still exist, and monotone will refuse to attempt another alteration while the workspace is
in this inconsistent state. This also acts as a lock against multiple monotone processes
performing workspace alterations (but not other programs).

The best way to avoid a messy recovery from such a failure is simply to ensure that you
always commit before trying to update (or pluck, etc) other changes from the database
into your workspace. This ensures that your current workspace contents are safely stored,
and can be retrieved later (such as with revert).

60 monotone documentation

3.8 Quality Assurance

Monotone was constructed to serve both as a version control tool and as a quality assurance
tool. The quality assurance features permit users to ignore, or “filter out”, versions which
do not meet their criteria for quality. This section describes the way monotone represents
and reasons about quality information.

Monotone often views the collection of revisions as a directed graph, in which revisions
are the nodes and changes between revisions are the edges. We call this the revision graph.
The revision graph has a number of important subgraphs, many of which overlap. For
example, each branch is a subgraph of the revision graph, containing only the nodes carrying
a particular branch cert.

Many of monotone’s operations involve searching the revision graph for the ancestors
or descendants of a particular revision, or extracting the “heads” of a subgraph, which is
the subgraph’s set of nodes with no descendants. For example, when you run the update
command, monotone searches the subgraph consisting of descendants of the base revision
of the current workspace, trying to locate a unique head to update the base revision to.

Monotone’s quality assurance mechanisms are mostly based on restricting the subgraph
each command operates on. There are two methods used to restrict the subgraph:
• By restricting the set of trusted branch certificates, you can require that specific code

reviewers have approved of each edge in the subgraph you focus on.
• By restricting the set of trusted testresult certificates, you can require that the end-

points of an update operation have a certificate asserting that the revision in question
passed a certain test, or testsuite.

The evaluation of trust is done on a cert-by-cert basis by calling a set of Lua hooks:
get_revision_cert_trust, get_manifest_cert_trust and get_file_cert_trust.
These hooks are only called when a cert has at least one good signature from a known key,
and are passed all the keys which have signed the cert, as well as the cert’s ID, name and
value. The hook can then evaluate the set of signers, as a group, and decide whether to
grant or deny trust to the assertion made by the cert.

The evaluation of testresults is controlled by the accept_testresult_change hook.
This hook is called when selecting update candidates, and is passed a pair of tables de-
scribing the testresult certs present on the source and proposed destination of an update.
Only if the change in test results are deemed “acceptable” does monotone actually select
an update target to merge into your workspace.

For details on these hooks, see the Chapter 6 [Hook Reference], page 155.

Chapter 3: Advanced Uses 61

3.9 Vars

Every monotone database has a set of vars associated with it. Vars are simple configuration
variables that monotone refers to in some circumstances; they are used for configuration
that monotone needs to be able to modify itself, and that should be per-database (rather
than per-user or per-workspace, both of which are supported by ‘monotonerc’ scripts). Vars
are local to a database, and never transferred by netsync.

A var is a name = value pairing inside a domain. Domains define what the vars inside it
are used for; for instance, one domain might contain database-global settings, and particular
vars inside it would define things like that database’s default netsync server. Another
domain might contain key fingerprints for servers that monotone has interacted with in the
past, to detect man-in-the-middle attacks; the vars inside this domain would map server
names to their fingerprints.

You can set vars with the set command, delete them with the unset command, and see
them with the ls vars command. See the documentation for these specific commands for
more details.

Existing vars

There are several pre-defined domains that monotone knows about:

database Contains database-global configuration information. Defined names are:

default-exclude-pattern
The default branch exclusion glob pattern for netsync operations to
use. Automatically set by first use of netsync, and by any netsync
that uses the ‘--set-default’ option.

default-include-pattern
The default branch glob pattern for netsync operations to use. Au-
tomatically set by first use of netsync, and by any netsync that uses
the ‘--set-default’ option.

default-server
The default server for netsync operations to use. Automatically
set by first use of netsync, and by any netsync that uses the
‘--set-default’ option.

known-servers
Contains key hashes for servers that we have netsynced with in the past. Anal-
ogous to ssh’s ‘known_hosts’ file, this is needed to detect man-in-the-middle
attacks. Automatically set the first time you netsync with any given server.
If that server’s key later changes, monotone will notice, and refuse to connect
until you have run mtn unset known-servers server-name .

62 monotone documentation

3.10 Reserved Files

A monotone workspace consists of control files and non-control files. Each type of file can
be versioned or non-versioned. These classifications lead to four groups of files:
• versioned control files
• non-versioned control files
• versioned non-control files
• non-versioned non-control files

Control files contain special content formatted for use by monotone. Versioned files are
recorded in a monotone database and have their state tracked as they are modified.

If a control file is versioned, it is considered part of the state of the workspace, and will
be recorded as a manifest entry. If a control file is not versioned, it is used to manage the
state of the workspace, but it not considered an intrinsic part of it.

Most files you manage with monotone will be versioned non-control files. For example, if
you keep source code or documents in a monotone database, they are versioned non-control
files. Non-versioned, non-control files in your workspace are generally temporary or junk
files, such as backups made by editors or object files made by compilers. Such files are
ignored by monotone.

Identifying control files

Control files are identified by their names. Non-control files can have any name except the
names reserved for control files. The names of control files follow a regular pattern:

Versioned control files
Any file name beginning with ‘.mtn-’

Non-versioned control files
Any file in the directory ‘_MTN/’

The general intention is that versioned control files are things that you may want to edit
directly. In comparison, you should never have to edit non-versioned control files directly;
monotone should do that for you whenever it is appropriate. However, both are documented
here, just in case a situation arises where you need to go “under the hood”.

Existing control files

The following control files are currently used. More control files may be added in the future,
but they will follow the patterns given above.

‘.mtn-ignore’
Contains a list of regular expression patterns, one per line. If it exists, any
file with a name matching one of these patterns is ignored. See Section 7.5
[Regexps], page 199, for the syntax of these regular expressions.

‘_MTN/wanted-testresults’
Contains a list of testresult key names, one per line. If it exists, update will only
select revisions that do not have regressions according to the given testresult
keys.

Chapter 3: Advanced Uses 63

‘_MTN/revision’
Contains the identity of the “base” revision of the workspace, and a list of
additions, deletions, and renames which have occurred in the current workspace,
relative to that version.
Every workspace has a base revision, which is the revision that was originally
checked out to create that workspace. When the workspace is committed, the
base revision is considered to be the ancestor of the committed revision.

‘_MTN/options’
Contains “sticky” command-line options such as ‘--db’ or ‘--branch’, such
that you do not need to enter them repeatedly after checking out a particular
workspace.

‘_MTN/log’
Contains log messages to append to the “changelog” cert upon commit. The
user may add content to this file while they work. Upon a successful commit
monotone will empty the file making it ready for the next edit/commit cycle.

‘_MTN/inodeprints’
If this file exists, monotone considers the directory to be in Section 3.5 [Inode-
prints], page 52 mode, and uses this file to cache the inodeprints.

‘_MTN/debug’
If monotone detects a bug in itself or crashes, then before exiting it dumps a
log of its recent activity to this file, to aid in debugging.

64 monotone documentation

3.11 Reserved Certs

Every certificate has a name. Some names have meaning which is built in to monotone,
others may be used for customization by a particular user, site, or community. If you
wish to define custom certificates, you should prefix such certificate names with x-. For
example, if you want to make a certificate describing the existence of security vulnerabilities
in a revision, you might wish to create a certificate called x-vulnerability. Monotone
reserves all names which do not begin with x- for possible internal use. If an x- certificate
becomes widely used, monotone will likely adopt it as a reserved cert name and standardize
its semantics.

Most reserved certificate names have no meaning yet; some do. Usually monotone is also
responsible for generating many of these certs as part of normal operation, such as during
a commit. Others will be added explicitly via other commands, like tag or approve.

As well as carrying other information, certs (and combinations of certs) are useful for
identifying revisions with Section 3.2 [Selectors], page 47; in particular, this is the primary
purpose of the tag cert.

The pre-defined, reserved certificate names are:

author This cert’s value is the name of a person who committed the revision the cert is
attached to. The cert is generated when you commit a revision. It is displayed
by the log command.

branch This cert’s value is the name of a branch. A branch cert associates a revision
with a branch. The revision is said to be “in the branch” named by the cert.
The cert is generated when you commit a revision, either directly with the
commit command or indirectly with the merge or propagate commands. The
branch certs are read and directly interpreted by many monotone commands,
and play a fundamental role in organizing work in any monotone database.

changelog
This cert’s value is the change log message you provide when you commit a
revision. It is displayed by the log command.

comment This cert’s value is an additional comment, usually provided after committing,
about a revision. Certs with the name comment will be shown together with
changelog certs by the log command.

date This cert’s value is an ISO date string indicating the time at which a revision
was committed. It is displayed by the log command, and may be used as an
additional heuristic or selection criterion in other commands in the future.

suspend This cert’s value is the name of a branch (see the branch cert). This cert is
generated by the suspend command. A suspended revision is removed from
the list of head revisions of a branch in most cases. A branch with all its heads
suspended will not appear in the list of branches. Suspended revisions can still
have children, and those children are in no way affected by the suspend cert on
their parent.

tag This cert’s value is a symbolic name given to a revision, which may be used as
a way of selecting the revision by name for later commands like checkout, log
or diff.

Chapter 3: Advanced Uses 65

testresult
This cert’s value is interpreted as a boolean string, either 0 or 1. It is generated
by the testresult command and represents the results of running a particular
test on the underlying revision. Typically you will make a separate signing key
for each test you intend to run on revisions. This cert influences the update
algorithm.

66 monotone documentation

3.12 Naming Conventions

Some names in monotone are private to your work, such as filenames. Other names are
potentially visible outside your project, such as rsa key identifiers or branch names. It is
possible that if you choose such names carelessly, you will choose a name which someone
else in the world is using, and subsequently you may cause confusion when your work and
theirs is received simultaneously by some third party.

We therefore recommend two naming conventions:
• For rsa keys, use the name of an active email address you own. This will minimize

conflicts, and also serves as a mnemonic to associate your personal identity with sig-
natures made with your key. For example, monotone’s primary author uses the key
identifier graydon@pobox.com.

• For branch names, select any name you like but prefix it with the “inverted domain
name” of a DNS domain you control or are otherwise authorized to use. This behavior
mimics the package naming convention in the java programming language. For exam-
ple, monotone itself is developed within the net.venge.monotone branch, because the
author owns the DNS domain venge.net.

Chapter 3: Advanced Uses 67

3.13 File Attributes

Monotone contains a support for storing persistent attributes on files and directories, gen-
erally known as attrs for short. An attr associates a simple name/value pair with a file or
directory, and is stored in the manifest. Attrs are first-class versioned data; they can be
changed in a workspace, and those changes will be saved when the workspace is committed.
The merger knows how to intelligently merge attrs.

The attribute mechanism was originally motivated by the fact that some people like
to store executable programs in version control systems, and would like the programs to
remain executable when they check out a workspace. For example, the configure shell
script commonly shipped with many programs should be executable. Similarly, some people
would like to store devices, symbolic links, read-only files, and all manner of extra attributes
of a file, not directly related to a file’s data content.

Monotone comes with support for some attrs built-in; for instance, if an executable file
is given to mtn add, then it will automatically mark the new file with a mtn:execute attr,
and when the file is checked out later, the executable bit will be set automatically. (Of
course, if it is checked out on Windows, which does not support the executable bit, then
the executable bit will not be set. However, monotone will still know that the attr is set,
and Windows users can view and modify the attr like anyone else.)

Attrs in the current workspace can be seen and modified using the mtn attr command;
see Section 5.2 [Workspace], page 85. Attrs can also be found by examining any manifest
directly.

You can tell monotone to automatically take actions based on these attributes by defining
hooks; see the attr_functions entry in Chapter 6 [Hook Reference], page 155. Every time
your workspace is written to, monotone will run the corresponding hooks registered for each
attr in your workspace. This way, you can extend the vocabulary of attrs understood by
monotone simply by writing new hooks.

You can make up your own attrs for anything you find useful; the mechanism is fully
general. (If you make up some particularly useful ones, we may even be interested in adding
support to monotone proper.) We only ask that if you do use custom attrs, you use some
prefix for them besides mtn:; attrs beginning with mtn: are reserved for monotone’s own
use.

68 monotone documentation

3.14 Merging

Monotone has two merging modes, controlled by the manual_merge attribute. By default
all files are merged in automatic mode, unless the manual_merge attribute for that file is
present and true. In automatic mode files are merged without user intervention, using
monotone’s internal three-way merging algorithm. Only if there are conflicts or an ancestor
is not available monotone switches to manual mode, essentially escalating the merging to the
user. When working in manual mode, monotone invokes the merge3 hook to start an user
defined external merge tool. If the tool terminates without writing the merged file, monotone
aborts the merging, reverting any changes made. By redefining the aforementioned hooks
the user can not only choose a preferred merge tool, but even select different programs for
different file types. For example, gimp for .png files, OpenOffice.org for .doc, and so on.
Starting with monotone 0.20, the manual_merge attribute is automatically set at add time
for all “binary” files, i.e. all files for which the binary_file hook returns true. Currently,
this means all files with extension gif, jpeg, png, bz2, gz and zip, plus files containing at
least one of the following bytes:

0x00 thru 0x06

0x0E thru 0x1a

0x1c thru 0x1f

The attribute could also be manually forced or removed using the appropriate monotone
commands. Remember that monotone switches to manual merging even if only one of the
files to be merged has the manual_merge attribute set.

Chapter 3: Advanced Uses 69

3.15 Migrating and Dumping

While the state of your database is logically captured in terms of a packet stream, it is
sometimes necessary or desirable (especially while monotone is still in active development)
to modify the SQL table layout or storage parameters of your version database, or to make
backup copies of your database in plain text. These issues are not properly addressed by
generating packet streams: instead, you must use migration or dumping commands.

The mtn db migrate command is used to alter the SQL schema of a database. The
schema of a monotone database is identified by a special hash of its generating SQL, which
is stored in the database’s auxiliary tables. Each version of monotone knows which schema
version it is able to work with, and it will refuse to operate on databases with different
schemas. When you run the migrate command, monotone looks in an internal list of SQL
logic which can be used to perform in-place upgrades. It applies entries from this list, in
order, attempting to change the database it has into the database it wants. Each step of this
migration is checked to ensure no errors occurred and the resulting schema hashes to the
intended value. The migration is attempted inside a transaction, so if it fails — for example
if the result of migration hashes to an unexpected value — the migration is aborted.

If more drastic changes to the underlying database are made, such as changing the page
size of SQLite, or if you simply want to keep a plain text version of your database on hand,
the mtn db dump command can produce a plain ASCII SQL statement which generates the
state of your database. This dump can later be reloaded using the mtn db load command.

Note that when reloading a dumped database, the schema of the dumped database is
included in the dump, so you should not try to init your database before a load.

70 monotone documentation

3.16 Importing from CVS

Monotone is capable of reading CVS files directly and importing them into a database. This
feature is still somewhat immature, but moderately large “real world” CVS trees on the
order of 1GB have successfully been imported.

Note however that the machine requirements for CVS trees of this size are not trivial:
it can take several hours on a modern system to reconstruct the history of such a tree and
calculate the millions of cryptographic certificates involved. We recommend experimenting
with smaller trees first, to get a feel for the import process.

We will assume certain values for this example which will differ in your case:
• Your domain name, example.net in this example.
• Your key name, import@example.net in this example.
• Your project name, wobbler in this example.
• Your database name, ‘test.mtn’ in this example.
• Your CVS repository path, ‘/usr/local/cvsroot’ in this example.
• The CVS module name for your project, wobbler in this example.

Accounting for these differences at your site, the following is an example procedure for
importing a CVS repository “from scratch”, and checking the resulting head version of the
import out into a workspace:

$ mtn --db=test.mtn db init

$ mtn --db=test.mtn genkey import@example.net

$ mtn --db=test.mtn --branch=net.example.wobbler cvs_import /usr/local/cvsroot/wobbler

$ mtn --db=test.mtn --branch=net.example.wobbler checkout wobber-checkout

Chapter 3: Advanced Uses 71

3.17 Using packets

Suppose you made changes to your database, and want to send those changes to someone
else but for some reason you cannot use netsync. Or maybe you want to extract and inject
individual revisions automatically via an external program. In this case, you can convert
the information into packets. Packets are a convenient way to represent revisions and other
database contents as plain text with wrapped lines – just what you need if you want to send
them in the body of an email.

This is a tutorial on how to transfer single revisions between databases by dumping them
from one database to a text file and then reading the dump into a second database.

We will create two databases, A and B, then create a few revisions in A, and transfer
part of them to B.

First we initialize the databases:

$ mtn -d A db init

$ mtn -d B db init

Now set up a branch in A:

$ mtn -d A setup -b test test

And let’s put some revisions in that branch:

$ cd test/

$ cat > file

xyz

^D

$ mtn add file

$ mtn ci -m "One" You may need to select a key and type a passphrase here

$ cat > file2

file 2 getting in

^D

$ cat > file

ERASE

^D

$ mtn add file2

$ mtn ci -m "Two"

$ cat > file

THIRD

^D

$ mtn ci -m "Three"

OK, that’s enough. Let’s see what we have:

$ cd ..

$ mtn -d A automate select i: | mtn -d A automate toposort -

a423db0ad651c74e41ab2529eca6f17513ccf714

d14e89582ad9030e1eb62f563c8721be02ca0b65

151f1fb125f19ebe11eb8bfe3a5798fcbea4e736

Three revisions! Let’s transfer the first one to the database B. First we get the meta-
information on that revision:

72 monotone documentation

$ mtn -d A automate get_revision a423db0ad651c74e41ab2529eca6f17513ccf714

format_version "1"

new_manifest [b6dbdbbe0e7f41e44d9b72f9fe29b1f1a4f47f18]

old_revision []

add_dir ""

add_file "file"

content [8714e0ef31edb00e33683f575274379955b3526c]

OK, one file was added in this revision. We’ll transfer it. Now, ORDER MATTERS !
We should transfer:

1. The file data (fdata) and file deltas (fdeltas), if any

2. The release data (rdata)

3. The certs

In that order. This is because certs make reference to release data, and release data
makes reference to file data and file deltas.

mtn -d A automate packet_for_fdata 8714e0ef31edb00e33683f575274379955b3526c > PACKETS

mtn -d A automate packet_for_rdata a423db0ad651c74e41ab2529eca6f17513ccf714 >> PACKETS

mtn -d A automate packets_for_certs a423db0ad651c74e41ab2529eca6f17513ccf714 >> PACKETS

mtn -d B read < PACKETS

This revision (a423db0ad651c74e41ab2529eca6f17513ccf714) was already sent to data-
base B. You may want to check the PACKETS file to see what the packets look like.

Now let’s transfer one more revision:

mtn -d A automate get_revision d14e89582ad9030e1eb62f563c8721be02ca0b65

format_version "1"

new_manifest [48a03530005d46ed9c31c8f83ad96c4fa22b8b28]

old_revision [a423db0ad651c74e41ab2529eca6f17513ccf714]

add_file "file2"

content [d2178687226560032947c1deacb39d16a16ea5c6]

patch "file"

from [8714e0ef31edb00e33683f575274379955b3526c]

to [8b52d96d4fab6c1e56d6364b0a2673f4111b228e]

From what we see, in this revision we have one new file and one patch, so we do the
same we did before for them:

mtn -d A automate packet_for_fdata d2178687226560032947c1deacb39d16a16ea5c6 > PACKETS2

mtn -d A automate packet_for_fdelta 8714e0ef31edb00e33683f575274379955b3526c 8b52d96d4fab6c1e56d6364b0a2673f4111b228e >> PACKETS2

mtn -d A automate packet_for_rdata d14e89582ad9030e1eb62f563c8721be02ca0b65 >> PACKETS2

mtn -d A automate packets_for_certs d14e89582ad9030e1eb62f563c8721be02ca0b65 >> PACKETS2

mtn -d B read < PACKETS2

Fine. The two revisions should be in the second database now. Let’s take a look at
what’s in each database:

Chapter 3: Advanced Uses 73

$ mtn -d A automate select i: | mtn -d A automate toposort -

a423db0ad651c74e41ab2529eca6f17513ccf714

d14e89582ad9030e1eb62f563c8721be02ca0b65

151f1fb125f19ebe11eb8bfe3a5798fcbea4e736

$ mtn -d B automate select i: | mtn -d B automate toposort -

a423db0ad651c74e41ab2529eca6f17513ccf714

d14e89582ad9030e1eb62f563c8721be02ca0b65

Good! B has the two first revisions (as expected), and A has all three. However,
a checkout of that branch on B will not work, because the certificate signatures cannot
be verified. We need to transfer the signatures too (suppose the key used had the ID
"johndoe@domain.com"):

mtn -d A pubkey johndoe@domain.com > KEY_PACKETS

mtn -d B read < KEY_PACKETS

Done.
$ mtn -d B co -b test test-B

$ ls test-B

file2 _MTN x

$ more test-B/file2

file 2 getting in

And that’s it! The revisions were successfully transferred.

74 monotone documentation

Chapter 4: CVS Phrasebook 75

4 CVS Phrasebook

This chapter translates common CVS commands into monotone commands. It is an easy
alternative to reading through the complete command reference.

Checking Out a Tree

$ CVSROOT=:pserver:cvs.foo.com/wobbler

$ cvs -d $CVSROOT checkout -r 1.2

$ mtn pull www.foo.com com.foo.wobbler*

$ mtn checkout --revision=fe37 wobbler

The CVS command contacts a network server, retrieves a revision, and stores it in
your workspace. There are two cosmetic differences with the monotone command: remote
databases are specified by hostnames and globs, and revisions are denoted by sha1 values
(or selectors).

There is also one deep difference: pulling revisions into your database is a separate
step from checking out a single revision; after you have pulled from a network server, your
database will contain several revisions, possibly the entire history of a project. Checking
out is a separate step, after communication, which only copies a particular revision out of
your database and into a named directory.

Committing Changes

$ cvs commit -m "log message" $ mtn commit --message="log message"

$ mtn push www.foo.com com.foo.wobbler*

As with other networking commands, the communication step with monotone is explicit:
committing changes only saves them to the local database. A separate command, push,
sends the changes to a remote database.

Undoing Changes

$ cvs update -C file $ mtn revert file

Unlike CVS, monotone includes a separate revert command for undoing local changes
and restoring the workspace to the original contents of the base revision. Because this can
be dangerous, revert insists on an explicit argument to name the files or directories to be
reverted; use the current directory "‘.’" at the top of the workspace to revert everything.
The revert command is also used to restore deleted files (with a convenient ‘--missing’
option for naming these files).

In CVS, you would need to use update to restore missing or changed files, and you might
get back a newer version of the file than you started with. In monotone, revert always
takes you back to where you started, and the update command is only used to move the
workspace to a different (usually newer) base revision.

Incorporating New Changes

$ cvs update -d $ mtn pull www.foo.com com.foo.wobbler*

$ mtn merge

$ mtn update

76 monotone documentation

This command, like other networking commands, involves a separate communication
step with monotone. The extra command, merge, ensures that the branch your are working
on has a unique head. You can omit the merge step if you only want update to examine
descendants of your base revision, and ignore other heads on your branch.

Tagging Revisions

$ cvs tag FOO_TAG . $ mtn tag h: FOO_TAG

With CVS, tags are placed on individual files, and the closest thing to identifying a
consistent repository-wide revision is a set of files with the same tag. In monotone, all
changes are part of a repository-wide revision, and some of those revisions may be tagged.
Monotone has no partial tags that apply only to a subset of files.

Moving Workspace to Another Revision

$ cvs update -r FOO_TAG -d $ mtn update -r 830ac1a5f033825ab364f911608ec294fe37f7bc

$ mtn update -r t:FOO_TAG

With a revision parameter, the update command operates similarly in monotone and
CVS. One difference is that a subsequent commit will be based off the chosen revision in
monotone, while a commit in the CVS case is not possible without going back to the branch
head again. This version of update can thus be very useful if, for example, you discover
that the tree you are working against is somehow broken — you can update to an older
non-broken version, and continue to work normally while waiting for the tree to be fixed.

Viewing Differences

$ cvs diff $ mtn diff

$ cvs diff -r 1.2 -r 1.4 myfile $ mtn diff -r 3e7db -r 278df myfile

Monotone’s diff command is modeled on that of CVS, so the main features are the
same: diff alone prints the differences between your workspace and its base revision,
whereas diff accompanied by two revision numbers prints the difference between those
two revisions. The major difference between CVS and monotone here is that monotone’s
revision numbers are revision IDs, rather than file IDs. If one leaves off the file argument,
then diff can print the difference between two entire trees.

Showing Workspace Status

$ cvs status $ mtn status

This command operates similarly in monotone and CVS. The only major difference is
that monotone’s status command always gives a status of the whole tree, and outputs a
more compact summary than CVS.

Chapter 4: CVS Phrasebook 77

Adding Directories and Files to Workspace

$ cvs add dir

$ cvs add dir/subdir

$ cvs add dir/subdir/file.txt

$ mtn add dir/subdir/file.txt

Monotone does not explicitly store directories, so adding a file only involves adding the
file’s complete path, including any directories. Directories are created as needed, and empty
directories are ignored.

Removing Directories and Files from Workspace

$ rm file.txt

$ cvs remove file.txt

$ mtn drop file.txt

Monotone does not require that you erase a file from the workspace before you drop it.
Dropping a file both removes its entry in the manifest of the current revision and removes
it from the filesystem.

Viewing History

$ cvs log [file] $ mtn log [file]

Unlike CVS log, monotone log can also be used without a workspace; but in this case
you must pass a ‘--from’ revision argument to tell monotone where to start displaying the
log from.

Importing a New Project

$ cvs import wobbler vendor start $ mtn --db=/path/to/database.mtn -

-branch=com.foo.wobbler setup .

$ mtn add .

$ mtn commit

The setup command turns an ordinary directory into a monotone workspace. After
that, you can add your files and commit them as usual.

Initializing a Repository

$ cvs init -d /path/to/repository $ mtn db init --db=/path/to/database.mtn

Monotone’s “repository” is a single-file database, which is created and initialized by this
command. This file is only ever used by you, and does not need to be in any special location,
or readable by other users.

78 monotone documentation

Chapter 5: Command Reference 79

5 Command Reference

Monotone has a large number of commands. To help navigate through them all, commands
are grouped into logical categories.

80 monotone documentation

5.1 Tree

mtn cat path

mtn cat --revision=id path

Write the contents of a specific file path to standard output.

Without a ‘--revision’ argument, the command outputs the contents of path
as found in the current revision. This requires the command be executed from
within a workspace.

With an explicit ‘--revision’ argument, the command outputs contents of
path at that revision.

mtn checkout --revision=id directory

mtn co --revision=id directory

mtn --branch=branchname checkout directory

mtn --branch=branchname co directory

These commands copy a revision id out of your database, recording the chosen
revision (the base revision) in the file ‘directory/_MTN/revision’. These
commands then copy every file version listed in the revision’s manifest to paths
under directory. For example, if the revision’s manifest contains these entries:

dir ""

file "Makefile"

content [84e2c30a2571bd627918deee1e6613d34e64a29e]

file "include/hello.h"

content [c61af2e67eb9b81e46357bb3c409a9a53a7cdfc6]

file "src/hello.c

content [97dfc6fd4f486df95868d85b4b81197014ae2a84]

Then the following files are created:
directory/

directory/Makefile

directory/include/hello.h

directory/src/hello.c

If you wish to checkout in the current directory, you can supply the special
name ‘.’ (a single period) for directory. When running checkout into an ex-
isting directory, it is sometimes possible for Section 3.7 [Workspace Collisions],
page 58 to occur.

If no id is provided, as in the latter two commands, you must provide a branch-
name; monotone will attempt to infer id as the unique head of branchname if
it exists.

mtn clone --branch=branchname address directory

The clone command is a helper command that performs the roles of a number
of other commands all at once. Firstly, it constructs a new database. It then
populates this database by pulling any data in the branch branchname from
the remote database, address. Finally, it copies the files out of the newly created
database into a local directory, just as checkout would. The created database
is placed in the new workspace as ‘directory/_MTN/mtn.db’.

Chapter 5: Command Reference 81

mtn disapprove id

This command records a disapproval of the changes between id’s ancestor and
id. It does this by committing the inverse changes as a new revision descend-
ing from id. The new revision will show up as a new head and thus a sub-
sequent merge will incorporate the inverse of the disapproved changes in the
other head(s).
Conceptually, disapproves contract is that disapprove(A) gives a revision B
such that whenever B is merged with a descendant D of A the merge will result
in what D “would have looked like” if A had never happened.
Note that as a consequence of this contract the disapprove command only
works if id has exactly one ancestor, since it hasn’t been worked out how to
generate such a descendant in the multi-ancestor case.

mtn heads --branch=branchname
This command lists the “heads” of branchname.
The “heads” of a branch is the set of revisions which are members of the branch,
but which have no descendants. These revisions are generally the “newest”
revisions committed by you or your colleagues, at least in terms of ancestry.
The heads of a branch may not be the newest revisions, in terms of time, but
synchronization of computer clocks is not reliable, so monotone usually ignores
time.

mtn merge [--branch=branchname]
This command merges the “heads” of branchname, if there are multiple heads,
and commits the results to the database, marking the resulting merged revision
as a member of branchname. The merged revision will contain each of the head
revision IDs as ancestors.
A commit message may be provided. A message stating the revision ids that
were merged will be prepended to any user commit message.
Merging is performed by repeated pairwise merges: two heads are selected,
then their least common ancestor is located in the ancestry graph and these 3
revisions are provided to the built-in 3-way merge algorithm. The process then
repeats for each additional head, using the result of each previous merge as an
input to the next.

mtn propagate sourcebranch destbranch

This command takes a unique head from sourcebranch and merges it with a
unique head of destbranch, using the least common ancestor of the two heads
for a 3-way merge. The resulting revision is committed to destbranch. If
either sourcebranch or destbranch has multiple heads, propagate aborts, doing
nothing.
A commit message may be provided. A message stating the source and target
branches will be prepended to any user commit message.
The purpose of propagate is to copy all the changes on sourcebranch, since the
last propagate, to destbranch. This command supports the idea of making sep-
arate branches for medium-length development activities, such as maintenance
branches for stable software releases, trivial bug fix branches, public contri-

82 monotone documentation

bution branches, or branches devoted to the development of a single module
within a larger project.

mtn explicit_merge id id destbranch

This command merges exactly the two ids you give it, and places the result in
branch destbranch. It is useful when you need more control over the merging
process than propagate or merge give you. For instance, if you have a branch
with three heads, and you only want to merge two of them, you can use this
command. Or if you have a branch with two heads, and you want to propagate
one of them to another branch, again, you can use this command.

mtn merge_into_dir sourcebranch destbranch dir

This command takes a unique head from sourcebranch and merges it into a
unique head of destbranch, as a directory. The resulting revision is committed
to destbranch. If either sourcebranch or destbranch has multiple heads, merge_
into_dir aborts, doing nothing.
The purpose of merge_into_dir is to permit a project to contain another
project in such a way that propagate can be used to keep the contained project
up-to-date. It is meant to replace the use of nested checkouts in many circum-
stances.
Note that merge_into_dir does not permit changes made to the contained
project in destbranch to be propagated back to sourcebranch. Attempting this
would lead to sourcebranch containing both projects nested as in destbranch
instead of only the project originally in sourcebranch, which is almost certainly
not what would be intended.

mtn import --branch=branch [--message=message] [--dry-run] dir

mtn import --revision=revision [--message=message] [--dry-run] dir

This command imports the contents of the given directory and commits it to the
head of the given branch or as a child of the given revision (and consequently
into the branch that revision resides in).
If the given branch doesn’t exist, it is created automatically. If the branch
already exists, any missing files are dropped and any unknown files are added
before committing.
If --dry-run is given, no commit is done.
Roughly speaking, mtn import does the following:

$ mtn setup (with a twist)
$ mtn drop --missing
$ mtn add --unknown
$ mtn commit

The twist with the mtn setup part is that it sets the parent to be the given
revision or the head of the given branch instead of the null revision.

Chapter 5: Command Reference 83

5.1.1 Conflicts

The conflicts set of commands is used to specify conflict resolutions for merges, asyn-
chronously from the merge command itself. This lets the user take as much time as needed
to prepare all the conflict resolutions, and avoids losing work when a merge is aborted due
to a complicated conflict.

These commands require a workspace, to provide a place to store the conflicts and user
resolution files.

For all of these commands, if the --conflicts-file option is not given, the file
‘_MTN/conflicts’ is used. If the --conflicts-file option is given, the file must be in
the bookkeeping directory.

Files given in these commands are relative to the current working directory, or absolute.
In the conflict file, they are relative to the workspace root, or absolute.

mtn conflicts --conflicts-file=file store left_rev_id right_rev_id

Store the conflicts encountered by merging left rev id with right rev id, in the
specified file.
If left rev id and right rev id are not given, the first two heads that the merge
command would merge are used.
The conflicts file format is as output by the automate show_conflicts com-
mand; see See Section 5.9 [Automation], page 107.
Content conflicts that can be resolved by the internal line merger have resolu-
tions, so they will not show up in subsequent show_first commands.

mtn conflicts --conflicts-file=file show_first
Show the first unresolved conflict in the conflicts file, and list the possible
resolutions.

mtn conflicts --conflicts-file=file show_remaining
Show remaining unresolved conflicts in the conflicts file.

mtn conflicts --conflicts-file=file resolve_first resolution

Specify a resolution for the first conflict in the conflicts file; it must be a single
file conflict. The conflicts file is updated.

mtn conflicts --conflicts-file=file resolve_first_left resolution

mtn conflicts --conflicts-file=file resolve_first_right resolution

Specify a resolution for one of the files in the first conflict in the conflicts file;
it must be a two file conflict. The conflicts file is updated.

mtn conflicts clean
Delete the default conflicts file ‘_MTN/conflicts’, and the directory
‘_MTN/resolutions’. Users may store conflict resolution files in
‘_MTN/resolutions’; this command provides a convenient way to clean up.

For single file conflicts, there are two possible resolutions:

interactive file

The Lua merge3 hook is called to allow the user to manually merge the left and
right files, leaving the result in the specified file.
file must be a bookkeeping path; under ‘_MTN’.

84 monotone documentation

This inserts a resolved user file conflict resolution in the conflicts file.

user file

The file contents are replaced by the contents of the specified file.
This inserts a resolved user file conflict resolution in the conflicts file.

For two file conflicts, the possible resolutions are:

drop The file is dropped in the merge.
This inserts a resolved drop left or resolved drop right conflict resolution in
the conflicts file.

rename filename

The file is renamed.
This inserts a resolved rename left filename or resolved rename right filename
conflict resolution in the conflicts file.

user file

The file contents are replaced by the contents of the specified file. The other
file in the conflict must be dropped or renamed.
This inserts a resolved user left file or resolved user right file conflict resolution
in the conflicts file.

monotone internals note: we don’t provide an interactive resolution for two-file con-
flicts, because monotone currently does not provide a merge2 Lua hook. two-file conflicts
don’t have a shared ancestor, so merge3 is not applicable.

Chapter 5: Command Reference 85

5.2 Workspace

mtn setup [directory]
This command prepares directory as a monotone workspace, by creating and
populating the ‘_MTN’ directory with basic information. This information must
include at least the branch and the database to be used, both of which will be
placed in the ‘_MTN/options’ file.
This can be used with an empty directory to start a new blank project, or within
an existing directory full of files, prior to using mtn commit. If no directory is
specified, the current directory is used.

mtn add [--recursive | -R] [--no-respect-ignore] pathname...

mtn add [--recursive | -R] [--no-respect-ignore] --unknown [pathname...]
This command places “add” entries for the paths specified in pathname... in
the workspace’s “work list”. The work list of your workspace is stored in
‘_MTN/revision’, and is a list of explicit pathname changes you wish to commit
at some future time, such as addition, removal or renaming of files.
As a convenience, the ‘--unknown’ option can be used; this option will cause
all of the files listed by mtn list unknown to be added.
While this command places an “add” entry on your work list, it does not im-
mediately affect your database. When you commit your workspace, monotone
will use the work list to build a new revision, which it will then commit to the
database. The new revision will have any added entries inserted in its manifest.
Adding directories, whether explicitly or using the ‘--unknown’ option, is non-
recursive by default. The add command can be made recursive using the
‘--recursive’ option. When adding a directory non-recursively, monotone
will warn if the directory has any files that would be added by a recursive add.

mtn [--no-respect-ignore] mkdir directory...

This command creates a directory in the filesystem relative to your current
location and adds it to your workspace’s “work list”. The changes are not
reflected in your database until such time as you perform a commit. If you use
the ‘--no-respect-ignore’ flag, entries in ‘.mtn-ignore’ will not be honored.

mtn [--bookkeep-only] drop pathname...

mtn drop --missing
This command places “drop” entries for the paths specified in pathname... in
the workspace’s “work list” and deletes the file from the workspace. The work
list of your workspace is stored in ‘_MTN/revision’, and is a list of explicit
pathname changes you wish to commit at some future time, such as addition,
removal, or renaming of files. This command also removes any attributes on
pathname; see Section 3.13 [File Attributes], page 67 for more details. If you
use the ‘--missing’ flag it will add drop entries for any paths that monotone
is tracking for which you have already removed the files from the filesystem, in
addition to all those specified in pathname....
While this command places a “drop” entry on your work list, it does not im-
mediately affect your database. When you commit your workspace, monotone
will use the work list to build a new revision, which it will then commit to the

86 monotone documentation

database. The new revision will have any dropped entries removed from its
manifest.

There are situations in which drop will tell monotone to remove the file from
the revision at commit time, but where it will not to remove the file from the
workspace immediately. One is if the ‘--bookkeep-only’ option is supplied.
Another is if a file has un-committed changes or if a directory is not empty.

mtn [--bookkeep-only] rename src dst

mtn [--bookkeep-only] mv src dst

mtn [--bookkeep-only] rename src1 ... dst/

mtn [--bookkeep-only] mv src1 ... dst/

This command places “rename” entries for the paths specified in src and dst
in the workspace’s “work list”. The second form renames a number of source
paths to the given destination. The work list of your workspace is stored in
‘_MTN/revision’, and is a list of explicit pathname changes you wish to commit
at some future time, such as addition, removal, or renaming of files. This com-
mand also moves any attributes on src to dst; see Section 3.13 [File Attributes],
page 67 for more details, and, unless the ‘--bookkeep-only’ option is supplied,
it will rename the files immediately in the filesystem. In the case where dst
must be a directory (multiple src items), exists physically in the filesystem as
a directory or is specified as a directory by convention (a trailing /), it will be
automatically added to the workspace if it is not already versioned.

mtn commit
mtn ci
mtn commit --message=logmsg [--message=logmsg...]
mtn ci --message=logmsg [--message=logmsg...]
mtn commit --message-file=logfile
mtn ci --message-file=logfile
mtn commit pathname...

mtn ci pathname...

mtn commit --message=logmsg [--message=logmsg...] pathname...

mtn ci --message=logmsg [--message=logmsg...] pathname...

mtn commit --message-file=logfile pathname...

mtn ci --message-file=logfile pathname...

This command looks at your workspace, decides which files have changed, and
saves the changes to your database. It does this by loading the revision named
in ‘_MTN/revision’, locating the base manifest for your workspace, applying
any pathname changes described in ‘_MTN/revision’, and then comparing the
updated base manifest to the files it finds in your workspace, to determine which
files have been edited.

For each edited file, a delta is copied into the database. Then the newly con-
structed manifest is recorded (as a delta) and finally the new revision. Once all
these objects are recorded in you database, commit updates ‘_MTN/revision’
to indicate that the base revision is now the newly created revision, and that
there are no pathname changes to apply.

Chapter 5: Command Reference 87

Specifying pathnames to commit restricts the set of changes that are visible
and results in only a partial commit of the workspace. Changes to files not
included in the specified set of pathnames will be ignored and will remain in the
workspace until they are included in a future commit. With a partial commit,
only the relevant entries in ‘_MTN/revision’ will be removed and other entries
will remain for future commits.

From within a subdirectory of the workspace the commit command will, by
default, include all changes in the workspace. Specifying only the pathname
"." will restrict commit to files changed within the current subdirectory of the
workspace.

The ‘--message’ and ‘--message-file’ options are mutually exclusive. Both
provide a logmsg describing the commit. ‘--message-file’ actually specifies
the name of the file containing the log message, while ‘--message’ provides it
directly.

Multiple ‘--message’ options may be provided on the command line. The log
message will be formed by concatenating the ‘--message’ options provided,
with each one starting at the beginning of a new line.

The ‘_MTN/log’ file can be edited by the user during their daily work to record
the changes made to the workspace. When running the commit command with-
out a logmsg supplied, the contents of the ‘_MTN/log’ file will be read and passed
to the Lua hook edit_comment as a second parameter named user log content.
The log message will be prepended with a ’magic’ string that must be removed
to confirm the commit. This allows the user to easily cancel a commit, without
emptying the entire log message. If the commit is successful, the ‘_MTN/log’
file is cleared of all content making it ready for another edit/commit cycle.

If a ‘--branch’ option is specified, the commit command commits to this branch
(creating it if necessary). The branch becomes the new default branch of the
workspace.

The commit command also synthesizes a number of certificates, which it at-
taches to the new manifest version and copies into your database:

• An author cert, indicating the person responsible for the changes leading
to the new revision. Normally this defaults to your signing key or the
return value of the get_author hook; you may override this by passing the
‘--author’ option to commit. This is useful when committing a patch on
behalf of someone else, or when importing “by hand” from another version
control system.

• A branch cert, indicating the branch the committed revision belongs to.

• A date cert, indicating when the new revision was created. Normally this
defaults to the current time; you may override this by passing the ‘--date’
option to commit. This is useful when importing “by hand” from another
version control system.

• A changelog cert, containing the “log message” for these changes. If you
provided logmsg on the command line, this text will be used, otherwise
commit will run the Lua hook edit_comment (commentary, user_log_

88 monotone documentation

content), which typically invokes an external editor program, in which
you can compose and/or review your log message for the change.

mtn revert pathname...

mtn revert --missing pathname...

This command changes your workspace, so that changes you have made since
the last checkout or update are discarded. The command is restricted the set
of files or directories given as arguments. To revert the entire workspace, use
revert "." in the top-level directory. Specifying "." in a subdirectory will
restrict revert to files changed within the current subdirectory.
If the flag ‘--missing’ is given it reverts (ie, restores) any files which monotone
has listed in its manifest, but which have been deleted from the workspace.
Only missing files matching the given file or directory arguments are reverted.

mtn update
mtn update --revision=revision

Without a ‘--revision’ argument, this command incorporates “recent”
changes found in your database into your workspace. It does this by
performing 3 separate stages. If any of these stages fails, the update aborts,
doing nothing. The stages are:
• Examine the ancestry graph of revisions in your database, and (subject to

trust evaluation) select the set of all descendants of your workspace’s base
revision. Call this set the “candidates” of the update.

• Remove any candidates which lack acceptable testresult certificates. From
the remaining candidates, select the deepest child by ancestry and call it
the “target” of the update.

• Merge the target of the update with the workspace, in memory, and if the
merge is successful, write the result over top of the workspace.

With an explicit ‘--revision’ argument, the command uses that revision as
the update target instead of finding an acceptable candidate.
The effect is always to take whatever changes you have made in the workspace,
and to “transpose” them onto a new revision, using monotone’s 3-way merge
algorithm to achieve good results. Note that with the explicit ‘--revision’
argument, it is possible to update “backwards” or “sideways” in history —
for example, reverting to an earlier revision, or if your branch has two heads,
updating to the other. In all cases, the end result will be whatever revision you
specified, with your local changes (and only your local changes) applied.
If a ‘--branch’ option is specified, the update command tries to select the revi-
sion to update to from this branch. The branch becomes the new default branch
of the workspace (even if you also specify an explicit ‘--revision’ argument).
When running update, it is sometimes possible for Section 3.7 [Workspace
Collisions], page 58 to occur.

mtn pluck --revision=to
mtn pluck --revision=from --revision=to

This command takes changes made at any point in history, and attempts to edit
your current workspace to include those changes. The end result is identical

Chapter 5: Command Reference 89

to running mtn diff ‘-r’ from ‘-r’ to | patch ‘-p0’, except that this com-
mand uses monotone’s merger, and thus intelligently handles renames, conflicts,
and so on.

If only one revision is given, applies the changes made in to as compared with
to’s parent. If two revisions are given, applies the changes made to get from
from to to.

Note that this is not a true cherrypick operation. A true cherrypick, as that
word is used in version control theory, involves applying some changes out of
context, and then recording the identity between the original changes and the
newly applied changes for the use of later merges. This command does the first
part, not the second. As far as monotone is concerned, the changes made by
mtn pluck are exactly like those made in an editor; the command is simply
a convenient way to make certain edits quickly. In practice, this is rarely a
problem. mtn pluck should almost always be used between branches that will
never be merged — for instance, backporting fixes from a development branch
to a stable branch.

When you use pluck you are going behind monotone’s back, and reducing its
ability to help you keep track of what has happened in your history. Never use
pluck where a true merging command like merge, propagate, or explicit_
merge will do. If you find yourself using pluck often, you should consider
carefully whether there is any way to change your workflow to reduce your
need for plucking.

When running pluck, it is sometimes possible for Section 3.7 [Workspace Col-
lisions], page 58 to occur.

mtn refresh_inodeprints
This command puts the current workspace into Section 3.5 [Inodeprints],
page 52 mode, if it was not already, and forces a full inodeprints cache refresh.
After running this command, you are guaranteed that your workspace is in
inodeprints mode, and that the inodeprints cache is accurate and up to date.

mtn pivot_root [--bookkeep-only] pivot_root new_root put_old

Most users will never need this command. It is primarily useful in certain tricky
cases where one wishes to combine several projects into one, or split one project
into several. See also merge_into_dir.

Its effect is to rename the directory whose name is currently new root to become
the root directory of the versioned tree, and to at the same time rename the
directory that is currently the root of the versioned tree to have the name
put old. Conceptually, it is equivalent to executing the following commands in
the root of the workspace:

$ mtn rename . new_root/put_old

$ mtn rename new_root .

Except, of course, that these rename commands are illegal, because after the
first command the tree has no root at all, and there is a directory loop. This
illegality is the only reason for pivot_root’s existence; internally, the result is
treated exactly like two renames, including with respect to merges and updates.

90 monotone documentation

The use of ‘--bookkeep-only’ with this command is not recommended. It
causes the changes to be made in monotone’s records, but not in the filesystem
itself.
When running pivot_root, it is sometimes possible for Section 3.7 [Workspace
Collisions], page 58 to occur.

Chapter 5: Command Reference 91

5.3 Network

mtn serve [--bind=[address][:port]]
mtn serve --stdio [--no-transport-auth]
mtn pull [--set-default] [uri-or-address] [glob [...]
[--exclude=exclude-glob]]]
mtn push [--set-default] [uri-or-address] [glob [...]
[--exclude=exclude-glob]]]
mtn sync [--set-default] [uri-or-address] [glob [...]
[--exclude=exclude-glob]]]

These commands operate the “netsync” protocol built into monotone. This
is a custom protocol for rapidly synchronizing two monotone databases using
a hash tree index. The protocol is “peer to peer”, but requires one peer to
listen for incoming connections (the server) and the other peer (the client) to
connect to the server. When run with ‘--stdio’, the server listens for a single
connection then terminates. When run with ‘--bind’, or with neither option,
the server listens for TCP connections and serves them continuously, until it is
shut down.

The network address given to serve as an argument to ‘--bind’ should be a
host name to listen on, optionally followed by a colon and a port number. The
default port number is 4691. If no ‘--bind’ option is given, the server listens
on port 4691 of every network interface.

If serve is run with ‘--stdio’, a single netsync session is served over the
stdin and stdout file descriptors. If ‘--no-transport-auth’ is provided along
with ‘--stdio’, transport authentication and access control mechanisms are
disabled. Only use ‘--no-transport-auth’ if you are certain that the trans-
port channel in use already provides sufficient authentication and authorization
facilities.

The uri-or-address arguments given to push, pull, and sync can be of two
possible forms. If the argument is a URI, a Lua hook may transform the URI
into a connection command, and execute the command as a transport channel
for netsync. If the argument is a simple hostname (with optional port number),
monotone will use a TCP socket to the specified host and port as a transport
channel for netsync.

The glob parameters indicate a set of branches to exchange. Multiple glob
and ‘--exclude’ options can be specified; every branch which matches a glob
exactly, and does not match an exclude-glob, will be indexed and made available
for synchronization.

For example, perhaps Bob and Alice wish to synchronize their
net.venge.monotone.win32 and net.venge.monotone.i18n branches.
Supposing Alice’s computer has hostname alice.someisp.com, then Alice
might run:

$ mtn --bind=alice.someisp.com serve

And Bob might run
$ mtn sync alice.someisp.com "net.venge.monotone*"

92 monotone documentation

When the operation completes, all branches matching net.venge.monotone*
will be synchronized between Alice and Bob’s databases.
The pull, push, and sync commands only require you pass address and glob
the first time you use one of them; monotone will memorize this use and in the
future default to the same server and glob. For instance, if Bob wants to sync
with Alice again, he can simply run:

$ mtn sync

Of course, he can still sync with other people and other branches by passing
an address or address plus globs on the command line; this will not affect his
default affinity for Alice. If you ever do want to change your defaults, simply
pass the ‘--set-default’ option when connecting to the server and branch
pattern that you want to make the new default.
In the server, different permissions can be applied to each branch; see the
hooks get_netsync_read_permitted and get_netsync_write_permitted
(see Chapter 6 [Hook Reference], page 155).
If a ‘--pid-file’ option is specified, the command serve will create the spec-
ified file and record the process identifier of the server in the file. This file can
then be read to identify specific monotone server processes.
The syntax for patterns is very simple. * matches 0 or more arbitrary charac-
ters. ? matches exactly 1 arbitrary character. {foo,bar,baz} matches “foo”,
or “bar”, or “baz”. These can be combined arbitrarily. A backslash, \, can
be prefixed to any character, to match exactly that character — this might be
useful in case someone, for some odd reason, decides to put a “*” into their
branch name.

Chapter 5: Command Reference 93

5.4 Informative

mtn status
mtn status pathname...

This command prints a description of the “status” of your workspace. In par-
ticular, it prints:

• The branch currently selected in ‘_MTN/options’ for the workspace.

• The revision id of the “parent” revision of the workspace, on which your
in-progress changes are based.

• A list of logical changes between the base and current manifest versions,
such as adds, drops, renames, and patches.

Specifying optional pathname... arguments to the status command restricts
the set of changes that are visible and results in only a partial status of the
workspace. Changes to files not included in the specified set of pathnames will
be ignored.

From within a subdirectory of the workspace the status command will, by
default, include all changes in the workspace. Specifying only the pathname
"." will restrict status to files changed within the current subdirectory of the
workspace.

mtn log
mtn log [--last=n] [--next=n] [--from=id [...]] [--to=id [...]] [--brief]
[--no-merges] [--no-files] [--diffs] [file [...]]

This command prints out a log, in reverse-ancestry order, of small history sum-
maries. Each summary contains author, date, changelog and comment infor-
mation associated with a revision.

If ‘--brief’ is given, the output consists of one line per revision with the revision
ID, the author, the date and the branches (separated with commas).

If ‘--last=’n is given, at most n log entries will be given.

If ‘--next=’n is given, at most n log entries towards the current head revision
will be given from the workspace’s base revision in forward-ancestry order. This
is useful to review changes that will be applied to the workspace when update
is run.

If ‘--from=’id is given, the command starts tracing back through history from
these revisions, otherwise it starts from the base revision of your workspace.

If ‘--to=’id is given, log will only print entries for revisions that would not also
be printed when logging from the revisions specified in ‘--to’. This is useful
for reviewing changes between two points in history.

By default, the log entries for merge nodes are shown. If ‘--no-merges’ is given,
the log entries for these nodes will be excluded.

If ‘--no-files’ is given, the log output excludes the list of files changed in each
revision.

Specifying ‘--diffs’ causes the log output to include a unified diff of the
changes in each revision.

94 monotone documentation

If one or more files are given, the command will only log the revisions where
those files are changed.

mtn annotate file

mtn annotate [--revision=id] [--revs-only] file

Dumps an annotated copy of the file to stdout. The output is in the form
<short revision id>.. by <author> <date>: <line> Only the first 8 characters of
the revision id are displayed, the author cert value is truncated at the first @ or
space character and the date field is truncated to remove the time of day.
If ‘--revs-only’ is specified, each line of the file is translated to <revision id>:
<line> in the output, where <revision id> is the revision in which that line of
the file was last edited.

mtn complete file partial-id

mtn complete [--brief] key partial-id

mtn complete [--brief] revision partial-id

These commands print out all known completions of a partial sha1 value, listing
completions which are file, manifest or revision IDs depending on which
variant is used. For example, suppose you enter this command and get this
result:

$ mtn complete revision fa36

fa36deead87811b0e15208da2853c39d2f6ebe90

fa36b76dd0139177b28b379fe1d56b22342e5306

fa36965ec190bee14c5afcac235f1b8e2239bb2a

Then monotone is telling you that there are 3 revisions it knows about, in its
database, which begin with the 4 hex digits fa36. This command is intended
to be used by programmable completion systems, such as those in bash and
zsh.
The complete command for keys and revisions have a ‘--verbose’ option. Pro-
grammable completion systems can use ‘--verbose’ output to present users
with additional information about each completion option.
For example, verbose output for revision looks like this:

$ mtn complete revision 01f

01f5da490941bee1f0000f0561fc62eabfb2fa23 graydon@dub.net 2003-12-03T03:14:35

01f992577bd8bcdcade0f89e724fd5dc2d2bbe8a kinetik@orcon.nz 2005-05-11T05:19:29

01faad191d8d0474777c70b4d606782942333a78 kinetik@orcon.nz 2005-04-11T04:24:01

mtn diff [--unified] [--no-show-encloser]
mtn diff --context [--no-show-encloser]
mtn diff --external [--diff-args=argstring]
mtn diff pathname...

mtn diff --revision=id
mtn diff --revision=id pathname...

mtn diff --revision=id1 --revision=id2
mtn diff --revision=id1 --revision=id2 pathname...

These commands print out GNU “unified diff format” textual difference listings
between various manifest versions. With no ‘--revision’ options, diff will
print the differences between the base revision and the current revision in the
workspace.

Chapter 5: Command Reference 95

With one ‘--revision’ option, diff will print the differences between the re-
vision id and the current revision in the workspace. With two ‘--revision’
options diff will print the differences between revisions id1 and id2, ignoring
any workspace.

In all cases, monotone will print a textual summary – identical to the summary
presented by mtn status – of the logical differences between revisions in lines
proceeding the diff. These lines begin with a single hash mark #, and should
be ignored by a program processing the diff, such as patch.

Specifying pathnames to the diff command restricts the set of changes that
are visible and results in only a partial diff between two revisions. Changes to
files not included in the specified set of pathnames will be ignored.

From within a subdirectory of the workspace the diff command will, by default,
include all changes in the workspace. Specifying only the pathname "." will
restrict diff to files changed within the current subdirectory of the workspace.

The output format of diff is controlled by the options ‘--unified’,
‘--context’, ‘--no-show-encloser’, and ‘--external’. By default, monotone
uses its built-in diff algorithm to produce a listing in “unified diff” format
(analogous to running the program diff ‘-u’); you can also explicitly request
this with ‘--unified’. The built-in diff algorithm can also produce “context
diff” format (analogous to diff ‘-c’), which you request by specifying
‘--context’. The short options that diff accepts for these modes, ‘-u’ and
‘-c’, also work.

In either of these modes, monotone prints the name of the top-level code
construct that encloses each “hunk” of changes, unless suppressed with the
‘--no-show-encloser’. The options that diff accepts for this mode, ‘-p’ and
‘--show-c-function’, also work. Monotone finds the enclosing construct by
scanning backward from the first changed line in each hunk for a line that
matches a regular expression. The default regular expression is correct for
many programming languages. You can adjust the expression used with the
Lua hook get_encloser_pattern; Section 6.1 [Hooks], page 156. For the reg-
ular expression syntax, See Section 7.5 [Regexps], page 199.

‘--unified’ requests the “unified diff” format, the default. ‘--context’ re-
quests the “context diff” format (analogous to running the program diff ‘-c’).
Both of these formats are generated directly by monotone, using its built-in diff
algorithm.

Sometimes, you may want more flexibility in output formats; for these cases, you
can use ‘--external’, which causes monotone to invoke an external program
to generate the actual output. By default, the external program is diff, and
you can use the option ‘--diff-args’ to pass additional arguments controlling
formatting. The actual invocation of diff, default arguments passed to it,
and so on, are controlled by the hook external_diff; see Section 6.1 [Hooks],
page 156 for more details.

96 monotone documentation

mtn list certs id

mtn ls certs id

These commands will print out a list of certificates associated with a particular
revision id. Each line of the print out will indicate:

• Whether the signature on the certificate is ok or bad

• The key ID of the signer of the certificate

• The name of the certificate

• The value of the certificate

For example, this command lists the certificates associated with a particular
version of monotone itself, in the monotone development branch:

$ mtn list certs 4a96

mtn: expanding partial id ’4a96’

mtn: expanded to ’4a96a230293456baa9c6e7167cafb3c5b52a8e7f’

Key : graydon@pobox.com

Sig : ok

Name : author

Value : graydon@dub.venge.net

Key : graydon@pobox.com

Sig : ok

Name : branch

Value : monotone

Key : graydon@pobox.com

Sig : ok

Name : date

Value : 2003-10-17T03:20:27

Key : graydon@pobox.com

Sig : ok

Name : changelog

Value : 2003-10-16 graydon hoare <graydon@pobox.com>

:

: * sanity.hh: Add a const version of idx().

: * diff_patch.cc: Change to using idx() everywhere.

: * cert.cc (find_common_ancestor): Rewrite to recursive

: form, stepping over historic merges.

: * tests/t_cross.at: New test for merging merges.

: * testsuite.at: Call t_cross.at.

:

mtn list duplicates [--revision=id]
mtn ls duplicates [--revision=id]

This command lists duplicate files in a given revision. If no revision is given,
the workspace is used instead. Ignored and unknown files are excluded from
the listing.

Two or more files are considered duplicates if the sha1 hashes of their contents
are equal.

Chapter 5: Command Reference 97

mtn list keys
mtn ls keys
mtn list keys pattern

mtn ls keys pattern

These commands list rsa keys held in your keystore and current database. They
do not print out any cryptographic information; they simply list the names of
public and private keys you have on hand.
If pattern is provided, it is used as a glob to limit the keys listed. Otherwise all
keys in your database are listed.

mtn list branches
mtn ls branches

This command lists all known branches in your database.

mtn list tags
mtn ls tags

This command lists all known tags in your database.

mtn list vars
mtn ls vars
mtn list vars domain

mtn ls vars domain

This command lists all vars in your database, or all vars within a given domain.
See Section 3.9 [Vars], page 61 for more information.

mtn list known
mtn ls known
mtn list known pathname...

mtn ls known pathname...

This command lists all files which would become part of the manifest of the
next revision if you committed your workspace at this point.
Specifying pathnames to the list known command restricts the set of paths
that are searched for manifest files. Files not included in the specified set of
pathnames will not be listed.
From within a subdirectory of the workspace the list known command will,
by default, search the entire workspace. Specifying only the pathname "." will
restrict the search for known files to the current subdirectory of the workspace.

mtn list unknown
mtn ls unknown
mtn list unknown pathname...

mtn ls unknown pathname...

This command lists all files in your workspace that monotone is either ignoring
or knows nothing about.
Specifying pathnames to the list unknown command restricts the set of paths
that are searched for unknown files. Unknown files not included in the specified
set of pathnames will not be listed.
From within a subdirectory of the workspace the list unknown command will,
by default, search the entire workspace. Specifying only the pathname "."

98 monotone documentation

will restrict the search for unknown files to the current subdirectory of the
workspace.

mtn list ignored
mtn ls ignored
mtn list ignored pathname...

mtn ls ignored pathname...

This command lists all files in your workspace that monotone is intentionally
ignoring, due to the results of the ignore_file (filename) hook.
Specifying pathnames to the list ignored command restricts the set of paths
that are searched for ignored files. Ignored files not included in the specified
set of pathnames will not be listed.
From within a subdirectory of the workspace the list ignored command will,
by default, search the entire workspace. Specifying only the pathname "." will
restrict the search for ignored files to the current subdirectory of the workspace.

mtn list missing
mtn ls missing
mtn list missing pathname...

mtn ls missing pathname...

This command lists all files in your workspace’s base manifest, which are not
present in the workspace.
Specifying pathnames to the list missing command restricts the set of paths
that are searched for missing files. Missing files not included in the specified
set of pathnames will not be listed.
From within a subdirectory of the workspace the list missing command will,
by default, search the entire workspace. Specifying only the pathname "." will
restrict the search for missing files to the current subdirectory of the workspace.

mtn list changed
mtn ls changed
mtn list changed pathname...

mtn ls changed pathname...

This command lists all files in your workspace that have changed compared to
the base revision, including files that are dropped, added or renamed.
Specifying pathnames to the list changed command restricts the set of paths
that are checked for changes. Files not included in the specified set of pathnames
will not be listed.
From within a subdirectory of the workspace the list changed command will,
by default, search the entire workspace. Specifying only the pathname "." will
restrict the search for known files to the current subdirectory of the workspace.

mtn show_conflicts rev rev

This command shows what conflicts would need to be resolved in order to merge
the given revisions.
Note that this does not show conflicts due to update commands, since in that
case one revision is the workspace.

Chapter 5: Command Reference 99

5.5 Key and Cert Trust

mtn genkey keyid

This command generates an rsa public/private key pair, using a system random
number generator, and stores it in your keystore under the key name keyid.

The private half of the key is stored in an encrypted form, so that anyone
who can read your keystore cannot extract your private key and use it. You
must provide a passphrase for your key when it is generated, which is used
to determine the encryption key. In the future you will need to enter this
passphrase again each time you sign a certificate, which happens every time you
commit to your database. You can tell monotone to automatically use a certain
passphrase for a given key using the get_passphrase(keypair_id), but this
significantly increases the risk of a key compromise on your local computer. Be
careful using this hook.

The public key is stored in the database; the public and private keys are stored
in the keystore. This allows copying the database without copying the private
key.

The location of the keystore is specified by the ‘--keydir’ option; it
defaults to the value stored in ‘_MTN/options’ for commands executed in
a workspace, or to the system default (‘~/.monotone/keys’ on Unix and
Cygwin, ‘%APPDATA%/monotone/keys’ on native Win32).

mtn dropkey keyid

This command drops the public and/or private key. If both exist, both are
dropped, if only one exists, it is dropped. This command should be used with
caution as changes are irreversible without a backup of the key(s) that were
dropped.

mtn passphrase id

This command lets you change the passphrase of the private half of the key id.

mtn trusted id certname certval signers

This command lets you test your revision trust hook get_revision_cert_
trust (see Chapter 6 [Hook Reference], page 155). You pass it a revision ID,
a certificate name, a certificate value, and one or more key IDs, and it will tell
you whether, under your current settings, Monotone would trust a cert on that
revision with that value signed by those keys.

mtn ssh_agent_add
This command will add your monotone keys to your current ssh-agent session.
You will be asked for the passphrase for each of your monotone private keys and
they will be added to the ssh-agent. Once this is done you should be able to
type ssh-add -l and see your monotone key listed. When you subsequently use
these keys through monotone it will use ssh-agent for signing without asking
your for your passphrase.

This command is mainly for use in a session script as monotone will automati-
cally add your keys to ssh-agent on first use if it is available. For example the
following two examples are equivalent:

100 monotone documentation

$ mtn ssh_agent_add

enter passphrase for key ID [user@example.com]:

$ mtn ci -m"Changed foo to bar"

$ mtn push -k user@example.com

$ mtn ci -m"Changed foo to bar"

enter passphrase for key ID [user@example.com]:

$ mtn push -k user@example.com

In the second example, monotone automatically added the key to ssh-agent,
making entering the passphrase not needed during the push.

mtn ssh_agent_export filename

This command will export your private key in a format that ssh-agent can read
(PKCS8, PEM). You will be asked for your current key’s password and a new
password to encrypt the key with. The key will be printed to stdout. Once you
have put this key in a file simply add it to ssh-agent and you will only have to
enter your key password once as ssh-agent will cache the key for you.

$ mtn ssh_agent_export ~/.ssh/id_monotone

enter passphrase for key ID [user@example.com]:

enter new passphrase for key ID [user@example.com]:

confirm passphrase for key ID [user@example.com]:

$ chmod 600 ~/.ssh/id_monotone

$ ssh-agent /bin/bash

$ ssh-add ~/.ssh/id_monotone

Enter passphrase for /home/user/.ssh/id_monotone:

Identity added: /home/user/.ssh/id_monotone (/home/user/.ssh/id_monotone)

$ mtn ci -m"Changed foo to bar"

$ mtn push -k user@example.com

You can also use the ‘--ssh-sign’ option to control whether ssh-agent will
be used for signing. If set to yes, ssh-agent will be used to sign. If your key
has not been added to ssh-agent monotone will fall back to its internal signing
code and ask you for your password. If set to only, monotone will sign only
with ssh-agent. If set to no, monotone will always use its internal signing
code even if ssh-agent is running and has your monotone key loaded. If set to
check, monotone will sign with both ssh-agent (if your key is loaded into it)
and monotone’s internal signing code, then compare the results. check will be
removed at some future time as it is meant only for testing and will not work
with all signing algorithms.

Chapter 5: Command Reference 101

5.6 Certificate

mtn cert id certname

mtn cert id certname certval

These commands create a new certificate with name certname, for a revision
with version id. The id argument can be a selector using certs already on the
revision, such as h:branchname .
If certval is provided, it is the value of the certificate. Otherwise the certificate
value is read from stdin.

mtn approve id

This command is a synonym for mtn cert id branch branchname where
branchname is the current branch name (either deduced from the workspace
or from the ‘--branch’ option).

mtn comment id

mtn comment id comment

These commands are synonyms for mtn cert id comment comment . If comment
is not provided, it is read from stdin.

mtn suspend id

This command is a synonym for mtn cert id suspend branchname where
branchname is the current branch name (either deduced from the workspace
or from the ‘--branch’ option).

mtn tag id tagname

This command associates the symbolic name tagname with the revision id, so
that symbolic name can later be used in Section 3.2 [Selectors], page 47 for
specifying revisions for commands like update or diff.
This command is a synonym for mtn cert id tag tagname .

mtn testresult id 0
mtn testresult id 1

These commands are synonyms for mtn cert id testresult 0 or mtn cert id

testresult 1.

102 monotone documentation

5.7 Packet I/O

Monotone can produce and consume data in a convenient, portable form called packets. A
packet is a sequence of ASCII text, wrapped at 70-columns and easily sent through email
or other transports. If you wish to manually transmit a piece of information – for example
a public key – from one monotone database to another, it is often convenient to read and
write packets.

Note: earlier versions of monotone queued and replayed packet streams for their net-
working system. This older networking system has been removed, as the netsync protocol
has several properties which make it a superior communication system. However, the packet
I/O facility will remain in monotone as a utility for moving individual data items around
manually.

mtn automate packets_for_certs id

This command prints out an rcert packet for each cert in your database as-
sociated with id. These can be used to transport certificates safely between
monotone databases. See Section 5.9 [Automation], page 107 for details of this
command.

mtn automate packet_for_fdata id

mtn automate packet_for_rdata id

These commands print out an fdata or rdata packet for the file, manifest or
revision id in your database. These can be used to transport files or revisions,
in their entirety, safely between monotone databases. See Section 5.9 [Automa-
tion], page 107 for details of these commands.

mtn automate packet_for_fdelta id1 id2

This command prints out an fdelta packet for the differences between file
versions id1 and id2, in your database. These can be used to transport file
differences safely between monotone databases. See Section 5.9 [Automation],
page 107 for details of this command.

mtn privkey keyid

mtn pubkey keyid

These commands print out an keypair or pubkey packet for the rsa key keyid.
These can be used to transport public or private keys safely between monotone
databases.

mtn read

mtn read file1 file2...

This command reads packets from files or stdin and stores them in your data-
base.

Chapter 5: Command Reference 103

5.8 Database

mtn set domain name value

Associates the value value to name in domain domain. See Section 3.9 [Vars],
page 61 for more information.

mtn unset domain name

Deletes any value associated with name in domain. See Section 3.9 [Vars],
page 61 for more information.

mtn db init --db=dbfile
This command initializes a new monotone database at dbfile.

mtn db info --db=dbfile
This command prints information about the monotone database dbfile, includ-
ing its schema version and various table size statistics.

mtn db version --db=dbfile
This command prints out just the schema version of the monotone database
dbfile.

mtn db dump --db=dbfile
This command dumps an SQL statement representing the entire state of dbfile
to the standard output stream. It is a very low-level command, and produces
the most “recoverable” dumps of your database possible. It is sometimes also
useful when migrating databases between variants of the underlying SQLite
database format.

mtn db load --db=dbfile
This command applies a raw SQL statement, read from the standard input
stream, to the database dbfile. It is most useful when loading a database
dumped with the dump command.
Note that when reloading a dumped database, the schema of the dumped data-
base is included in the dump, so you should not try to init your database
before a load.

mtn db migrate --db=dbfile
This command attempts to migrate the database dbfile to the newest schema
known by the version of monotone you are currently running. If the migration
fails, no changes should be made to the database.
If you have important information in your database, you should back up a copy
of it before migrating, in case there is an untrapped error during migration.

mtn db check --db=dbfile
Monotone always works hard to verify the data it creates and accesses. For
instance, if you have hard drive problems that corrupt data in monotone’s
database, and you attempt to retrieve this data, then monotone will notice the
problem and stop, instead of silently giving you garbage data.
However, it’s also nice to notice such problems early, and in rarely used parts
of history, while you still have backups. That’s what this command is for.
It systematically checks the database dbfile to ensure that it is complete and
consistent. The following problems are detected:

104 monotone documentation

• missing files that are referenced by their sha1 hash from some manifest
but do not exist in the database. This is a serious problem; it means that
your history is not fully reconstructible. You can fix it by finding the file
with the given hash, and loading it into your database with fload.

• unreferenced files that exist in the database but are not referenced by their
sha1 hash from any existing manifest. In itself, this only indicates some
wasted space, and is not a problem; it’s possible it could arise under normal
use (for instance, in some strange corner cases following an incomplete
netsync). It could also arise, though, as a symptom of some other more
serious problem.

• missing manifests that are referenced by their sha1 hash from some revision
but do not exist in the database. This is a serious problem; it means
that your history is not fully reconstructible. You can fix it by finding
a database containing the manifest, and using mdata on that database to
create a manifest data packet, which can be loaded into your database with
read.

• unreferenced manifests that exist in the database but are not referenced
by their sha1 hash from any existing revision. In itself, this only indicates
some wasted space, and is not a problem; it’s possible it could arise under
normal use (for instance, if you have run db kill_rev_locally, or in some
strange-but-harmless corner cases following an incomplete netsync). It
could also arise, though, as a symptom of some other more serious problem.

• incomplete manifests that exist in the database but contain references to
files that do not exist in the database. For diagnosis and solution, see
“missing files” above.

• missing revisions that are referenced by their sha1 hash from some other
revision or revision cert but do not exist in the database. This may be a se-
rious problem; it may indicate that your history is not fully reconstructible
(if the reference is from another revision) or that someone is creating bogus
certs (if the reference is from a cert). You can fix it by finding a database
containing the revision, and using rdata on that database to create a re-
vision data packet, which can be loaded into your database with read.

• incomplete revisions that exist in the database but contain references to
missing manifests, incomplete manifests or missing revisions. This always
occurs with some more detailed error; see above.

• revisions with mismatched parents that disagree with the cached revision
ancestry on their parent revisions. This may cause problems in using the
database, and suggests the presence of a bug in monotone’s caching system,
but does not involve data loss.

• revisions with mismatched children that disagree with the cached revision
ancestry on their child revisions. This may cause problems in using the
database, and suggests the presence of a bug in monotone’s caching system,
but does not involve data loss.

• revisions with bad history that exist in the database but fail monotone’s
normal sanity checks for consistent and correct history. This is a seri-

Chapter 5: Command Reference 105

ous problem; it indicates that your history record is somehow malformed.
This should not be possible, since monotone carefully checks every revision
before storing it into the database, but if it does, then please request assis-
tance on the monotone mailing list. Fixing this generally means you may
lose some history — for instance, renames may be degraded into delete/add
pairs — but the actual contents of every revision will still be reproducible.

• revisions with missing certs that exist in the database lacking at least
one author, branch, changelog or date cert. All revisions are expected to
have at least one of each of these certs. In itself, this is not necessarily
a problem, but it is peculiar, and some operations such as netsync may
behave strangely.

• revisions with mismatched certs that exist in the database with differing
numbers of author, changelog and date certs. These certs are expected
to appear together, as each revision committed should have an author,
changelog and date associated with it. In itself, this is not a problem, but
it is peculiar. All operations should behave normally.

• missing keys that have been used to sign certs but do not exist in the
database. In itself, this is not a problem, except that monotone will ignore
any certs signed by the missing key. You can fix it by finding a database
containing the key in question, and using pubkey on that database to create
a public key packet, which can be loaded into your database with read.

• certs with bad signatures that exist in the database with signatures that
are invalid. In itself, this is not a problem, except that monotone will
ignore any such certs. You may also wish to find out who is creating certs
with bad signatures; it may indicate some kind of security attack.

• certs with unchecked signatures that exist in the database but cannot have
their signatures checked because the signing key is missing. In itself, this
is not a problem, except that monotone will ignore any certs signed by the
missing key. You can fix it by finding a database containing the key in
question, and using pubkey on that database to create a public key packet,
which can be loaded into your database with read.

This command also verifies that the sha1 hash of every file, manifest, and
revision is correct.

mtn db kill_rev_locally id

This command “kills”, i.e., deletes, a given revision, as well as any certs attached
to it. It has an ugly name because it is a dangerous command; it permanently
and irrevocably deletes historical information from your database. If you ex-
ecute this command in a workspace, whose parent revision is the one you are
about to delete, the killed revision is re-applied to this workspace which makes
it possible for you to fix a problem and commit again later on easily. For this
to work, the workspace may not have any changes and/or missing files.
There are a number of other caveats with this command:
• It can only be applied to revisions that have no descendants. If you want

to kill a revision that has descendants, you must kill all of the descendants
first.

106 monotone documentation

• It only removes the revision from your local database (hence the “locally”
in the command name). If you have already pushed this revision out to
another database, then the next time you pull from that database it may
come back again. There is no way to delete a revision from somebody else’s
database except to ask them to delete it for you.

• It does not actually delete the revision’s files or manifest from your data-
base. If you run this command, and then run db check, it will note that
you have an “unreferenced manifest”. If you wish to eliminate this data
for good (and thus free up the space), you may use netsync to pull from
your current database into a new database; this creates a copy of your old
database, without the unreferenced data. However, having this data in
your database will not cause any problems, and acts as a safety net; if you
later realize that you do, after all, need to retrieve the data in id, then db
check will let you see which manifest it was, and with some work you can
extract id’s data.

mtn db kill_branch_certs_locally branch

This command “kills” a branch by deleting all branch certs with that branch
name. You should consider carefully whether you want to use it, because it
can irrevocably delete important information. It does not modify or delete any
revisions or any of the other certificates on revisions in the branch; it simply
removes the branch certificates matching the given branch name. Because of
this, it can leave revisions without any branch certificate at all. As with db
kill_rev_locally, it only deletes the information from your local database;
if there are other databases that you sync with which have revisions in this
branch, the branch certificates will reappear when you sync, unless the owners
of those databases also delete those certificates locally.

mtn db kill_tag_locally tag

This command “kills” a tag by deleting all tag certs with that tag name. You
should consider carefully whether you want to use it, because it can irrevocably
delete important information. It does not modify or delete any revisions, or
any of the other certificates on tagged revisions; it simply removes all tag cer-
tificates with the given name. As with db kill_rev_locally, it only deletes
the information from your local database; if there are other databases that you
sync with which have this tag, the tag certificates will reappear when you sync,
unless the owners of those databases also delete those certificates locally.

mtn db execute sql-statement

This is a debugging command which executes sql-statement against your data-
base, and prints any results of the expression in a tabular form. It can be used
to investigate the state of your database, or help diagnose failures.

Chapter 5: Command Reference 107

5.9 Automation

This section contains subcommands of the mtn automate command, used for scripting
monotone. All give output on stdout; they may also give useful chatter on stderr, includ-
ing warnings and error messages.

mtn automate interface_version

Arguments:
None.

Added in:

0.0

Purpose:

Prints version of the automation interface. Major number
increments whenever a backwards incompatible change is made to
the automate command; minor number increments whenever any
change is made (but is reset when major number increments).

Sample output:
1.2

Output format:
A decimal number, followed by “.” (full stop/period), followed by
a decimal number, followed by a newline, followed by end-of-file.
The first decimal number is the major version, the second is the
minor version.

Error conditions:
None.

mtn automate heads [branch]

Arguments:
One branch name, branch. If none is given, the current default
branch is used.

Added in:

0.0

Purpose:

Prints the heads of branch branch.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one head of the given
branch. Each line consists of a revision ID, in hexadecimal, followed
by a newline. The lines are printed in alphabetically sorted order.

Error conditions:
If the given branch contains no members or does not exist, then no
lines are printed.

108 monotone documentation

mtn automate ancestors rev1 [rev2 [...]]

Arguments:
One or more revision IDs, rev1, rev2, etc.

Added in:

0.2

Purpose:

Prints the ancestors of one or more revisions.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one ancestor of the given
revisions. Each line consists of a revision ID, in hexadecimal, fol-
lowed by a newline. The lines are printed in alphabetically sorted
order.
The output does not include rev1, rev2, etc., except if rev2 is itself
an ancestor of rev1, then rev2 will be included in the output.

Error conditions:
If any of the revisions do not exist, prints nothing to stdout, prints
an error message to stderr, and exits with status 1.

mtn automate common_ancestors rev1 [rev2 [...]]

Arguments:
One or more revision IDs, rev1, rev2, etc.

Added in:

2.1

Purpose:

Prints all revisions which are ancestors of all of the revisions given
as arguments.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one common ancestor of all
the given revisions. Each line consists of a revision ID, in hexadec-
imal, followed by a newline. The lines are printed in alphabetically
sorted order.
The output will include one of the argument revisions only if that
revision is an ancestor of all other revisions given as arguments.

Error conditions:
If any of the revisions do not exist, prints nothing to stdout, prints
an error message to stderr, and exits with status 1.

Chapter 5: Command Reference 109

mtn automate parents rev

Arguments:
One revision ID, rev.

Added in:

0.2

Purpose:

Prints the immediate parents of a revision. This is like a non-
recursive version of automate ancestors.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one parent of the given re-
vision. Each line consists of a revision ID, in hexadecimal, followed
by a newline. The lines are printed in alphabetically sorted order.

Error conditions:
If the given revision rev does not exist, prints nothing to stdout,
prints an error message to stderr, and exits with status 1.

mtn automate descendents rev1 [rev2 [...]]

Arguments:
One or more revision IDs, rev1, rev2, etc.

Added in:

0.1

Purpose:

Prints the descendants of one or more revisions.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one descendant of the
given revisions. Each line consists of a revision ID, in hexadecimal,
followed by a newline. The lines are printed in alphabetically sorted
order.
The output does not include rev1, rev2, etc., except that if rev2 is
itself a descendant of rev1, then rev2 will be included in the output.

Error conditions:
If any of the revisions do not exist, prints nothing to stdout, prints
an error message to stderr, and exits with status 1.

mtn automate children rev

Arguments:
One revision ID, rev.

110 monotone documentation

Added in:

0.2

Purpose:

Prints the immediate children of a revision. This is like a non-
recursive version of automate descendents.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one child of the given re-
vision. Each line consists of a revision ID, in hexadecimal, followed
by a newline. The lines are printed in alphabetically sorted order.

Error conditions:
If the given revision rev does not exist, prints nothing to stdout,
prints an error message to stderr, and exits with status 1.

mtn automate graph

Arguments:
None.

Added in:

0.2

Purpose:

Prints out the complete ancestry graph of this database.

Sample output:
0c05e8ec9c6af4224672c7cc4c9ef05ae8bdb794
27ebcae50e1814e35274cb89b5031a423c29f95a 5830984dec5c41d994bcadfeab4bf1bf67747b89
4e284617c80bec7da03925062a84f715c1b042bd 27ebcae50e1814e35274cb89b5031a423c29f95a 657c756d24fb65213d59f4ae07e117d830dcc95b

Output format:
Zero or more lines, each giving ancestry information for one
revision. Each line begins with a revision ID. Following this
are zero or more space-prefixed revision IDs. Each revision
ID after the first is a parent (in the sense of automate
parents) of the first. For instance, in the above sample output,
0c05e8ec9c6af4224672c7cc4c9ef05ae8bdb794 is a root node,
27ebcae50e1814e35274cb89b5031a423c29f95a has one parent, and
4e284617c80bec7da03925062a84f715c1b042bd has two parents,
i.e., is a merge node.

The output as a whole is alphabetically sorted by line; additionally,
the parents within each line are alphabetically sorted.

Error conditions:
None.

Chapter 5: Command Reference 111

mtn automate erase_ancestors [rev1 [rev2 [...]]]

Arguments:
One or more revision IDs, rev1, rev2, etc.

Added in:

0.1

Purpose:

Prints all arguments, except those that are an ancestor of some
other argument. One way to think about this is that it prints
the minimal elements of the given set, under the ordering imposed
by the “child of” relation. Another way to think of it is if the
arguments formed a branch, then we would print the heads of that
branch. If there are no arguments, prints nothing.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one descendant of the
given revisions. Each line consists of a revision ID, in hexadecimal,
followed by a newline. The lines are printed in alphabetically sorted
order.

Error conditions:
If any of the revisions do not exist, prints nothing to stdout, prints
an error message to stderr, and exits with status 1.

mtn automate toposort [rev1 [rev2 [...]]]

Arguments:
One or more revision IDs, rev1, rev2, etc.

Added in:

0.1

Purpose:

Prints all arguments, topologically sorted. I.e., if rev1 is an ancestor
of rev2, then rev1 will appear before rev2 in the output; if rev2 is
an ancestor of rev1, then rev2 will appear before rev1 in the output;
and if neither is an ancestor of the other, then they may appear in
either order. If there are no arguments, prints nothing.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
A list of revision IDs, in hexadecimal, each followed by a newline.
Revisions are printed in topologically sorted order.

112 monotone documentation

Error conditions:
If any of the revisions do not exist, prints nothing to stdout, prints
an error message to stderr, and exits with status 1.

mtn automate ancestry_difference new [old1 [old2 [...]]]

Arguments:
A “new” revision ID new, followed by zero or more “old” revision
IDs old1, old2, etc.

Added in:

0.1

Purpose:

Prints all ancestors of the revision new, that are not also ancestors
of one of the old revisions. For purposes of this command, “ances-
tor” is an inclusive term; for example, if new is an ancestor of old1,
it will not be printed; but if new is not an ancestor of any of the
“old” revisions, then it will be. Similarly, old1 will never be printed,
because it is considered to be an ancestor of itself. The reason for
the names is that if new a new revision, and old1, old2, etc. are
revisions that you have processed before, then this command tells
you which revisions are new since then.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
A list of revision IDs, in hexadecimal, each followed by a newline.
Revisions are printed in topologically sorted order.

Error conditions:
If any of the revisions do not exist, prints nothing to stdout, prints
an error message to stderr, and exits with status 1.

mtn automate leaves

Arguments:
None.

Added in:

0.1

Purpose:

Prints the leaves of the revision graph, i.e. all revision that have no
children. This is similar, but not identical to the functionality of
heads, which prints every revision in a branch, that has no descen-
dants in that branch. If every revision in the database was in the
same branch, then they would be identical. Generally, every leaf is
the head of some branch, but not every branch head is a leaf.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61

Chapter 5: Command Reference 113

75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each a leaf of the revision graph. Each line
consists of a revision ID, in hexadecimal, followed by a newline.
The lines are printed in alphabetically sorted order.

Error conditions:
None.

mtn automate roots

Arguments:
None.

Added in:

4.3

Purpose:

Prints the roots of the revision graph, i.e. all revisions that have
no parents.

Sample output:
276264b0b3f1e70fc1835a700e6e61bdbe4c3f2f

Output format:
Zero or more lines, each a root of the revision graph. Each line
consists of a revision ID, in hexadecimal, followed by a newline.
The lines are printed in alphabetically sorted order.

Error conditions:
None.

mtn automate branches

Arguments:
None.

Added in:

2.2

Purpose:

Prints all branch certs present in the revision graph, that are not
excluded by the Lua hook ignore_branch.

Sample output:
net.venge.monotone
net.venge.monotone.win32

Output format:
Zero or more lines, each the name of a branch. The lines are printed
in alphabetically sorted order.

Error conditions:
None.

114 monotone documentation

mtn automate tags [branch_pattern]

Arguments:
A branch pattern (optional).

Added in:

2.2

Purpose:

If a branch pattern is given, prints all tags that are attached to
revisions on branches matched by the pattern; otherwise prints all
tags of the revision graph.

If a branch name is ignored by means of the Lua hook ignore_
branch, it is neither printed, nor can it be matched by a pattern.

Sample output:
format_version "1"

tag "monotree-0.3"
revision [35cff8e8ba14155f5f7ddf7965073f514fd60f61]
signer "njs@pobox.com"

branches "net.venge.monotone.contrib.monotree"

tag "monotree-0.2"
revision [5d288b39b49613b0d9dca8ece6b9a42c3773f35b]
signer "njs@pobox.com"

branches "net.venge.monotone.contrib.monotree"

tag "monotree-0.1"
revision [8a121346ce2920b6f85df68b3b620de96bd14a8d]
signer "njs@pobox.com"

branches "net.venge.monotone.contrib" "net.venge.monotone.contrib.monotree"

tag "monotree-0.4"
revision [f1afc520474f83c58262896ede027ef77226046e]
signer "njs@pobox.com"

branches "net.venge.monotone.contrib.monotree"

Output format:
There is one basic io stanza for each tag.

All stanzas are formatted by basic io. Stanzas are separated by a
blank line. Values will be escaped, ’\’ to ’\\’ and ’"’ to ’\"’.

Each stanza has exactly the following four entries:

‘’tag’’ the value of the tag cert, i.e. the name of the tag

‘’revision’’
the hexadecimal id of the revision the tag is attached
to

Chapter 5: Command Reference 115

‘’signer’’
the name of the key used to sign the tag cert

‘’branches’’
a (possibly empty) list of all branches the tagged revi-
sion is on

Stanzas are printed in arbitrary order.

Error conditions:
A run-time exception occurs if an illegal branch pattern is specified.

mtn automate select selector

Arguments:
One selector (or combined selector).

Added in:

0.2

Purpose:

Print all revisions that match the given selector.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61
75156724e0e2e3245838f356ec373c50fa469f1f

Output format:
Zero or more lines, each giving the ID of one revision that matches
the given selector. Each line consists of a revision ID, in hexadec-
imal, followed by a newline. Revision ids are printed in alphabeti-
cally sorted order.

Error conditions:
None.

mtn automate identify path

Arguments:
A file path.

Added in:

4.3

Purpose:

Prints the file ID (aka hash) of the given file.

Sample output:
6265ab1312fbe38bdc3aafa92441139cb2b779b0

Output format:
A single line with the file’s ID, in hexadecimal, followed by a new-
line.

Error conditions:
If the file does not exists, is a special file or not readable, prints an
error message to stderr and exists with status 1. A single file path

116 monotone documentation

only consisting of "-" is disallowed since it collides with the UNIX
stdin marker.

mtn automate inventory [‘options...’] [files...]

Arguments:
One or more file paths (optional). If present, only show an inventory
for the given files or directories (and their sub-directories).

‘--depth=n ’
Maximum number of directories to descend.

‘--exclude=exclude-glob ’
File or directory to exclude.

‘--no-ignored’
Don’t output ignored files or directories.

‘--no-unknown’
Don’t output unknown directories.

‘--no-unchanged’
Don’t output files that are known but not changed in
any way.

‘--no-corresponding-renames’
If restricted to a renamed path, do not output the cor-
responding old / new paths for this restriction.

Changes:

• 8.0 – added the output of the birth key
• 7.0 – added options ‘--no-ignored’, ‘--no-unknown’,

‘--no-unchanged’ and ‘--no-corresponding-renames’
• 6.0 – converted to basic io format (restriction support, various

fixes)
• 1.0 – initial, line-based format

Purpose:

Prints the inventory of every file found in the workspace or its
associated base and revision manifests. Each unique path is listed
in a basic io stanza. Stanzas are separated by blank lines.

Sample output:
All basic status cases:

path "added"
new_type "file"
fs_type "file"
status "added" "known"
changes "content"

path "attributes_altered"
old_type "file"

Chapter 5: Command Reference 117

new_type "file"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "known"
changes "attrs"

path "dropped"
old_type "file"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "dropped"

path "ignored~"
fs_type "file"
status "ignored"

path "missing"
old_type "file"
new_type "file"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "missing"

path "original"
old_type "file"
new_path "renamed"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source"

path "patched"
old_type "file"
new_type "file"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "known"
changes "content"

path "patched_and_attributes_altered"
old_type "file"
new_type "file"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "known"
changes "content" "attrs"

path "renamed"

118 monotone documentation

new_type "file"
old_path "original"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "known"

path "unchanged"
old_type "file"
new_type "file"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "known"

path "unknown"
fs_type "file"
status "unknown"

Two files swapped in both the revision manifest and the workspace:
path "original"

old_type "file"
new_path "unchanged"
new_type "file"
old_path "unchanged"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"

path "unchanged"
old_type "file"
new_path "original"
new_type "file"
old_path "original"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"

Recorded in the revision manifest that two files were swapped, but
they were not actually swapped in the workspace. Thus they both
appear as patched:

path "original"
old_type "file"
new_path "unchanged"
new_type "file"
old_path "unchanged"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"
changes "content"

Chapter 5: Command Reference 119

path "unchanged"
old_type "file"
new_path "original"
new_type "file"
old_path "original"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"
changes "content"

Rename (in the manifest and the workspace) ‘foo’ to ‘bar’; add (in
the manifest and the workspace) new file ‘foo’:

path "foo"
old_type "file"
new_path "bar"
new_type "file"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "added" "known"

path "bar"
new_type "file"
old_path "foo"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "known"

Rotated files ‘foo’ -> ‘bar’ -> ‘baz’ -> ‘foo’ (in the manifest and
the workspace):

path "foo"
old_type "file"
new_path "bar"
new_type "file"
old_path "baz"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"

path "bar"
old_type "file"
new_path "baz"
new_type "file"
old_path "foo"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"

120 monotone documentation

path "baz"
old_type "file"
new_path "foo"
new_type "file"
old_path "bar"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"

Recorded in the revison manifest the rotation of files ‘foo’ -> ‘bar’
-> ‘baz’ -> ‘foo’, but the actual files in the workspace were not
moved, so monotone interprets all files as having been patched:

path "foo"
old_type "file"
new_path "bar"
new_type "file"
old_path "baz"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"
changes "content"

path "bar"
old_type "file"
new_path "baz"
new_type "file"
old_path "foo"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"
changes "content"

path "baz"
old_type "file"
new_path "foo"
new_type "file"
old_path "bar"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "rename_target" "known"
changes "content"

Dropped from the manifest but not removed in the workspace and
thus unknown:

path "dropped"
old_type "file"
fs_type "file"

Chapter 5: Command Reference 121

birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "dropped" "unknown"

Added in the manifest but not in the workspace, and thus missing:
path "added"

new_type "file"
fs_type "none"
status "added" "missing"

Recorded a rename in the manifest, but not moved in the
workspace, and thus unknown source and missing target:

path "original"
old_type "file"
new_path "renamed"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source" "unknown"

path "renamed"
new_type "file"
old_path "original"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "missing"

Moved in the workspace but no rename recorded in the manifest,
and thus missing source and unknown target:

path "original"
old_type "file"
new_type "file"
fs_type "none"
status "missing"

path "renamed"
fs_type "file"
status "unknown"

Renamed in the manifest and the workspace and patched:
path "original"

old_type "file"
new_path "renamed"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source"

path "renamed"
new_type "file"
old_path "original"
fs_type "file"

122 monotone documentation

birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "known"
changes "content"

Renamed and restricted to ‘original’ or ‘renamed’:
path "original"

old_type "file"
new_path "renamed"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]

status "rename_source"

path "renamed"
new_type "file"
old_path "original"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "known"
changes "content"

Renamed and restricted to ‘original’ with the
‘--no-corresponding-renames’ option:

path "original"
old_type "file"
new_path "renamed"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source"

Renamed and restricted to ‘renamed’ with the ‘--no-corresponding-renames’
option:

path "renamed"
new_type "file"
old_path "original"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "known"
changes "content"

File is missing, an unversioned directory is in the way:
path "missing_file"

old_type "file"
new_type "file"
fs_type "directory"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "invalid"
changes "content"

Directory is missing, an unversioned file is in the way:
path "missing_directory"

Chapter 5: Command Reference 123

old_type "directory"
new_type "directory"
fs_type "file"
status "invalid"

Directory ‘source’ renamed to ‘target’, ‘target’ is missing, an
unversioned file is in the way:

path "source"
old_type "directory"
new_path "target"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source"

path "source/a"
old_type "file"
new_path "target/a"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_source"

path "target"
new_type "directory"
old_path "source"
fs_type "file"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "invalid"

path "target/a"
new_type "file"
old_path "source/a"
fs_type "none"
birth [cb271687054afd3c2b873c8994f206f08fb240d3]
status "rename_target" "missing"

Output format:
Each path is printed in one basic io stanza. Stanzas are separated
by a blank line. Each stanza starts with a path line, and contains
up to seven lines. The order of the lines is not important, and may
change in future revisions, except that the first line will always be
path.

‘path’ The file or directory path, relative to the workspace
root. The file either exists in the workspace, or is listed
in the base or revision manifest. ‘path’ is always out-
put.

124 monotone documentation

‘old_type’
The type of the node in the base manifest. “type” is
either ‘file’ or ‘directory’. ‘old_type’ is output for
all old nodes (i.e. unchanged or dropped paths and
rename sources).

‘new_type’
The type of the node in the revision manifest. “type”
is either ‘file’ or ‘directory’. ‘new_type’ is output
for all new nodes (i.e. unchanged or added paths and
rename targets).

‘fs_type’ The type of the node in the workspace (also called
the filesystem). “type” is either ‘file’, ‘directory’
or ‘none’ (if the path does not exist in the file system).
‘fs_type’ is always output.

‘old_path’
The old path for the node, if it has been renamed in
the revision manifest. ‘old_path’ is only output for
rename targets.

‘new_path’
The new path for the node, if it has been renamed in
the revision manifest. ‘new_path’ is only output for
rename sources.

‘birth’ The identify of the revision that the node was first
added in. ‘birth’ is only output if it exists in a com-
mitted revision.

‘status’ ‘status’ is always output. Its value is one or more of:

‘rename_source’
path is part of a rename and denotes the
old name of a renamed node.

‘rename_target’
path is part of a rename and denotes the
new name of a renamed node.

‘added’ path has been added in the revision mani-
fest, but not existent in the base manifest.

‘dropped’ path has been deleted in the revision man-
ifest and the workspace.

‘missing’ path has been deleted in the workspace,
but still exists in the revision manifest.
A file will also be labeled ‘missing’ if it
is in a directory that is ignored due to a
regular expression in ‘.mtn-ignore’, but
is also in the revision manifest. A warning
is issued in this case.

Chapter 5: Command Reference 125

‘ignored’ path is ignored by monotone.

‘known’ path exists in the workspace, and in the
revision manifest.

‘unknown’ path exists in the workspace, but not in
the revision manifest, i.e. is unversioned.

‘invalid’ path is versioned and exists in the
workspace and revision manifest, but with
incompatible types (a versioned missing
file is replaced by an unversioned directory
and vice versa).

‘changes’

‘content’ The contents of a file have been changed.

‘attrs’ The attributes of a path (file or directory)
have been changed.

Error conditions:
When executed from outside of a workspace directory, prints an
error message to stderr, and exits with status 1.

mtn automate certs id

Arguments:
A revision ID id, for which any certificates will be printed.

Added in:

1.0

Purpose:

Prints all certificates associated with the given revision ID. Each
certificate is contained in a basic IO stanza. For each certificate,
the following values are provided:
’key’

a string indicating the key used to sign this certificate.
’signature’

a string indicating the status of the signature. Possible
values of this string are:

’ok’ : the signature is correct
’bad’ : the signature is invalid
’unknown’ : signature was made with an unknown key

’name’
the name of this certificate

’value’
the value of this certificate

’trust’
is this certificate trusted by the defined trust metric?
Possible values of this string are:

’trusted’ : this certificate is trusted
’untrusted’ : this certificate is not trusted

126 monotone documentation

Sample output:
key "emile@alumni.reed.edu"

signature "ok"
name "author"
value "emile@alumni.reed.edu"
trust "trusted"

key "emile@alumni.reed.edu"
signature "ok"

name "branch"
value "net.venge.monotone"
trust "trusted"

key "emile@alumni.reed.edu"
signature "ok"

name "changelog"
value "propagate from branch ’net.venge.monotone.annotate’ (head 76a886ef7c8ae12a4bba5fc2bd252557bf863aff)

to branch ’net.venge.monotone’ (head 2490479a4e4e99243fead6d627d78291fde592f0)
"

trust "trusted"

key "emile@alumni.reed.edu"
signature "ok"

name "date"
value "2005-05-20T20:19:25"
trust "trusted"

Output format:
All stanzas are formatted by basic io. Stanzas are separated by a
blank line. Values will be escaped, ’\’ to ’\\’ and ’"’ to ’\"’.

Error conditions:
If a certificate is signed with an unknown public key, a warning
message is printed to stderr. If the revision specified is unknown or
invalid prints an error message to stderr and exits with status 1.

mtn automate stdio

Arguments:
none

Changes:

• 3.1 – Added the ’o’ item to the recognized input. This change
should not break anything.

• 1.0 – Initial version.

Purpose:

Allow multiple automate commands to be run from one instance of
monotone.

Chapter 5: Command Reference 127

Sample input:
l6:leavese
l7:parents40:0e3171212f34839c2e3263e7282cdeea22fc5378e
o3:key11:foo@bar.come l4:cert40:0e3171212f34839c2e3263e7282cdeea22fc53783:foo3:bare

Input format:
[’o’ <string> <string> [<string> <string> [...]] ’e’]
’l’ <string> [<string> [...]] ’e’

The input is a series of commands. The command name plus argu-
ments are provided as ’l’ <string> [<string> ...] ’e’, where <string>
= <size> colon <data> . This may optionally be preceded by a
set of key=value pairs (command options) as ’o’ <string> <string>
[<string> <string> ...] ’e’, where strings come in pairs, key followed
by value. For flag options that don’t take values, specify the second
string as zero length; 0:.
The space between the ending ’e’ of one group of strings and the
beginning ’l’ or ’o’ of the next is reserved. Any characters other
than whitespace will cause an error.

Sample output:
0:0:l:205:0e3171212f34839c2e3263e7282cdeea22fc5378
1f4ef73c3e056883c6a5ff66728dd764557db5e6
2133c52680aa2492b18ed902bdef7e083464c0b8
23501f8afd1f9ee037019765309b0f8428567f8a
2c295fcf5fe20301557b9b3a5b4d437b5ab8ec8c
1:0:l:41:7706a422ccad41621c958affa999b1a1dd644e79

Output format:
The output consists of one or more packets for each command. A
packet looks like:
<command number>:<err code>:<last?>:<size>:<output>
<command number> is a decimal number specifying which com-
mand this output is from. It is 0 for the first command, and in-
creases by one each time.
<err code> is 0 for success, 1 for a syntax error, and 2 for any other
error.
<last?> is ’l’ if this is the last piece of output for this command,
and ’m’ if there is more output to come.
<size> is the number of bytes in the output.
<output> is a piece of the output of the command.
All but the last packet for a given command will have the <last?>
field set to ’m’.

Error conditions:
If a badly formatted or invalid command is received, or a command
is given with invalid arguments or options, prints an error message
to standard error and exits with nonzero status. Errors in the

128 monotone documentation

commands run through this interface do not affect the exit status.
Instead, the <err code> field in the output is set to 2, and the output
of the command becomes whatever error message would have been
given.

mtn automate get_revision id

Arguments:
The argument id specifies the revision id for which the changeset
information should be printed.

Changes:

• 7.0 – id is now mandatory
• 1.0 – initial

Purpose:

Prints change information for the specified revision id.

Sample output:
format_version "1"

new_manifest [bfe2df785c07bebeb369e537116ab9bb7a4b5e19]

old_revision [429fea55e9e819a046843f618d90674486695745]

patch "ChangeLog"
from [7dc21d3a46c6ecd94685ab21e67b131b32002f12]
to [234513e3838d423b24d5d6c98f70ce995c8bab6e]

patch "std_hooks.lua"
from [0408707bb6b97eae7f8da61af7b35364dbd5a189]
to [d7bd0756c48ace573926197709e53eb24dae5f5f]

Output format:
There are several changes that are described; each of these is de-
scribed by a different basic io stanza. The first string pair of each
stanza indicates the type of change represented.
All stanzas are formatted by basic io. Stanzas are separated by a
blank line. Values will be escaped, ’\’ to ’\\’ and ’"’ to ’\"’.
Possible values of this first value are along with an ordered list of
basic io formatted stanzas that will be provided are:
’format_version’

used in case this format ever needs to change.
format: (’format_version’, the string "1")
occurs: exactly once

’new_manifest’
represents the new manifest associated with the revision.
format: (’new_manifest’, manifest id)
occurs: exactly one

Chapter 5: Command Reference 129

’old_revision’
represents a parent revision.
format: (’old_revision’, revision id)
occurs: either one or two times

’delete
represents a file or directory that was deleted.
format: (’delete’, path)
occurs: zero or more times

’rename’
represents a file or directory that was renamed.
format: (’rename, old filename), (’to’, new filename)
occurs: zero or more times

’add_dir’
represents a directory that was added.
format: (’add_dir, path)
occurs: zero or more times

’add_file’
represents a file that was added.
format: (’add_file’, path), (’content’, file id)
occurs: zero or more times

’patch’
represents a file that was modified.
format: (’patch’, filename), (’from’, file id), (’to’, file id)
occurs: zero or more times

’clear’
represents an attr that was removed.
format: (’clear’, filename), (’attr’, attr name)
occurs: zero or more times

’set’
represents an attr whose value was changed.
format: (’set’, filename), (’attr’, attr name), (’value’, attr value)
occurs: zero or more times

These stanzas will always occur in the order listed here; stanzas
of the same type will be sorted by the filename they refer to. The
’delete’ and following stanzas will be grouped under the correspond-
ing ’old revision’ one.

Error conditions:
If the revision specified is unknown or invalid prints an error mes-
sage to stderr and exits with status 1.

mtn automate get_current_revision [--exclude excl] [--depth=depth] [path ...]

Arguments:
One or more path arguments restrict the revision to these paths,
otherwise all changes in workspace are taken into account.
Options excl and depth work just like in mtn commit.

Added in:

130 monotone documentation

7.0

Purpose:

Prints change information for the current workspace, optionally
restricted by one or more paths.

Sample output:
See automate get revision

Output format:
See automate get revision

Error conditions:
If the command is executed outside of a workspace, there are no
changes in the current workspace or the restriction is invalid or has
no recorded changes, prints an error message to stderr and exits
with status 1.

mtn automate get_base_revision_id

Arguments:
None.

Added in:

2.0

Purpose:

Prints the revision id the current workspace is based on. This is
the “old revision” value stored in ‘_MTN/revision’.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61

Output format:
One line containing the base revision ID of the current workspace.

Error conditions:
If no workspace book keeping MTN directory is found, prints an
error message to stderr, and exits with status 1.

mtn automate get_current_revision_id

Arguments:
None.

Added in:

2.0

Purpose:

Prints the revision id of the current workspace. This is the id of
the revision that would be committed by an unrestricted commit
in the workspace.

Sample output:
28ce076c69eadb9b1ca7bdf9d40ce95fe2f29b61

Chapter 5: Command Reference 131

Output format:
One line containing the current revision id ID of the current
workspace.

Error conditions:
If no workspace book keeping MTN directory is found, prints an
error message to stderr, and exits with status 1.

mtn automate get_manifest_of
mtn automate get_manifest_of revid

Arguments:
Specifying the optional revid argument outputs the manifest for
the revision with the specified ID. Otherwise, outputs the manifest
for the current workspace. (You can think of leaving the argument
blank as meaning “give me the manifest of THIS”.)

Added in:

2.0

Purpose:

Prints the contents of the manifest associated with the given roster.

Sample output:
format_version "1"

dir ""

file ".htaccess"
content [e3915658cb464d05f21332e03d30dca5d94fe776]

file "AUTHORS"
content [80d8f3f75c9b517ec462233e155f7dfb93379f67]

file "ChangeLog"
content [fc74a48c7f73eedcbe1ea709755fbe819b29736c]

file "LICENSE"
content [dfac199a7539a404407098a2541b9482279f690d]

file "README"
content [440eec971e7bb61ccbb61634deb2729bb25931cd]

file "TODO"
content [e0ea26c666b37c5f98ccf80cb933d021ee55c593]

file "branch.psp"
content [b28ece354969314ce996f3030569215d685973d6]

file "common.py"

132 monotone documentation

content [1fdb62e05fb2a9338d2c72ddc58de3ab2b3976fe]

file "config.py.example"
content [64cb5898e3a026b4782c343ca4386585e0c3c275]

file "error.psp"
content [7152c3ff110418aca5d23c374ea9fb92a0e98379]

file "fileinbranch.psp"
content [5d8536100fdf51d505b6f20bc9c16aa78d4e86a8]

file "headofbranch.psp"
content [981df124a0b5655a9f78c42504cfa8c6f02b267a]

file "help.psp"
content [a43d0588a69e622b2afc681678c2a5c3b3b1f342]

file "html.py"
content [18a8bffc8729d7bfd71d2e0cb35a1aed1854fa74]

file "index.psp"
content [c621827db187839e1a7c6e51d5f1a7f6e0aa560c]

file "monotone.py"
content [708b61436dce59f47bd07397ce96a1cfabe81970]

file "revision.psp"
content [a02b1c161006840ea8685e461fd07f0e9bb145a3]

file "rss_feed.gif"
content [027515fd4558abf317d54c437b83ec6bc76e3dd8]

file "tags.psp"
content [638140d6823eee5844de37d985773be75707fa25]

file "tarofbranch.psp"
content [be83f459a152ffd49d89d69555f870291bc85311]

file "test.py"
content [e65aace9237833ec775253cfde97f59a0af5bc3d]

attr "mtn:execute" "true"

file "utility.py"
content [fb51955563d64e628e0e67e4acca1a1abc4cd989]

file "viewmtn.css"
content [8d04b3fc352a860b0e3240dcb539c1193705398f]

Chapter 5: Command Reference 133

file "viewmtn.py"
content [7cb5c6b1b1710bf2c0fa41e9631ae43b03424a35]

file "wrapper.py"
content [530290467a99ca65f87b74f653bf462b28c6cda9]

Output format:
There is one basic io stanza for each file or directory in the manifest.
All stanzas are formatted by basic io. Stanzas are separated by a
blank line. Values will be escaped, ’\’ to ’\\’ and ’"’ to ’\"’.
Possible values of this first value are along with an ordered list of
basic io formatted stanzas that will be provided are:
’format_version’

used in case this format ever needs to change.
format: (’format_version’, the string "1")
occurs: exactly once

’dir’:
represents a directory. The path "" (the empty string) is used
to represent the root of the tree.
format: (’dir’, pathname)
occurs: one or more times

’file’:
represents a file.
format: (’file’, pathname), (’content’, file id)
occurs: zero or more times

In addition, ’dir’ and ’file’ stanzas may have attr information in-
cluded. These are appended to the stanza below the basic dir/file
information, with one line describing each attr. These lines take
the form (’attr’, attr name, attr value).
Stanzas are sorted by the path string.

Error conditions:
If the revision ID specified is unknown or invalid prints an error
message to stderr and exits with status 1.

mtn automate get_attributes path

Arguments:
The argument path determines which path’s attributes should be
printed.

Added in:

• 5.0 – renamed from attributes to get_attributes

• 3.0 – initial

Purpose:

Prints all attributes of the given file and the attribute states.

134 monotone documentation

Sample output:
format_version "1"

attr "foo" "bar"
state "added"

attr "baz" "bat"
state "dropped"

attr "foobar" "foobat"
state "unchanged"

Output format:
There is one basic io stanza for each attribute of the given file.
All stanzas are formatted by basic io. Stanzas are separated by a
blank line and ordered by attribute name. Values will be escaped,
’\’ to ’\\’ and ’"’ to ’\"’.
Each attribute stanza also contains another entry which tells the
status of attribute. This entry can have one of the following four
values:
• ’added’: the attribute has just been added to the file
• ’dropped’: the attribute has just been dropped from the file
• ’unchanged’: the attribute has not been changed since the last

revision
• ’changed’: the attribute has been changed since the last revi-

sion

The status ’changed’ can come up if an attribute foo has been
dropped and added afterwards with another value, like
$ mtn attr drop file.txt foo ; mtn attr set file.txt foo baz

If an attribute has been dropped, the output will still return the
previously set value of the dropped attribute for convenience (ob-
viously this is no longer recorded in the current workspace).
The complete format:
’format_version’

used in case this format ever needs to change.
format: (’format_version’, the string "1")
occurs: exactly once

’attr’:
represents an attribute.
format: (’attr’, key, value), (’state’, [unchanged|changed|added|dropped])
occurs: zero or more times

Error conditions:
If the path specified is unknown in the new workspace revision,
prints an error message to stderr and exits with status 1.

Chapter 5: Command Reference 135

mtn automate set_attribute path key value

Arguments:
A path, an attribute key and an attribute value.

Added in:

5.0

Purpose:

Edits the current workspace revision and inserts the given attribute
key and value for the specified path. Note that this change is
not committed and therefor behaves exactly like mtn attr set key

value .

Output format:
This command does not print out anything if successful.

Error conditions:
If the path specified is unknown in the new workspace revision,
prints an error message to stderr and exits with status 1.

mtn automate drop_attribute path [key]

Arguments:
A path and an attribute key (optional).

Added in:

5.0

Purpose:

Removes an attribute from the current workspace revision for the
specified path. If no attribute key is given, all attributes of this
path are removed. Note that this change is not committed and
therefor behaves exactly like mtn attr drop path [key].

Output format:
This command does not print out anything if successful.

Error conditions:
If the path specified is unknown in the new workspace revision or
the attribute key is not found for this path, prints an error message
to stderr and exits with status 1.

mtn automate content_diff [--revision=id1 [--revision=id2]] [files ...]

Arguments:
One or more file arguments restrict the diff output to these files,
otherwise all changed files in the given revision(s) and/or current
workspace are considered.
If zero or more revisions are given, the command behaves as follows:
• no revision: the diff is done between the workspace revision

and the parent (base) revision of this workspace
• one revision: the diff is done between the workspace revision

and the given revision ‘id1’,

136 monotone documentation

• two revisions: the diff is done between ‘id1’ and ‘id2’; no
workspace is needed in this case.

Changes:

• 9.0 – added ‘--with-header’ option
• 4.0 – initial

Purpose:

Prints the content changes between two revisions or a revision and
the current workspace. This command differs from mtn diff in
that way that it only outputs content changes and keeps quiet on
renames or drops by default, as the header of mtn diff is omitted
unless ‘--with-header’ is given and is omitted regardless if there
are no changes.

Sample output:
==
--- guitone/res/i18n/guitone_de.ts 9857927823e1d6a0339b531c120dcaadd22d25e9
+++ guitone/res/i18n/guitone_de.ts 0b4715dc296b1955b0707923d45d79ca7769dd3f
@@ -1,6 +1,14 @@
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE TS><TS version="1.1">
<context>
+ <name>AncestryGraph</name>
+ <message>
[...]

Output format:
The GNU unified diff format. If there have been no content changes,
the output is empty.

Error conditions:
If more than two revisions are given or a workspace is required, but
not found, prints to stderr and exits with status 1. If one or more
file restrictions can’t be applied, the command prints to stderr and
exits as well.

mtn automate get_file id

Arguments:
The id argument specifies the file hash of the file to be output.

Added in:

1.0

Purpose:

Prints the contents of the specified file.

Sample output:
If you’ve downloaded a release, see INSTALL for installation
instructions. If you’ve checked this out, the generated files are not
included, and you must use "autoreconf --install" to create them.

Chapter 5: Command Reference 137

"make html" for docs, or read the .info file and / or man page.

Output format:
The file contents are output without modification.

Error conditions:
If the file id specified is unknown or invalid prints an error message
to stderr and exits with status 1.

mtn automate get_file_of filename [--revision=id]

Arguments:
The filename argument specifies the filename of the file to be out-
put.
If a revision id is given, the file’s contents in that specific revision
are printed. If no revision is given, the workspace’s revision is used.

Added in:

4.0

Purpose:

Prints the contents of the specified file.

Sample output:
If you’ve downloaded a release, see INSTALL for installation
instructions. If you’ve checked this out, the generated files are not
included, and you must use "autoreconf --install" to create them.

"make html" for docs, or read the .info file and / or man page.

Output format:
The file contents are output without modification.

Error conditions:
If the filename specified is unknown in the given revision or invalid,
or if the given revision is unknown, prints an error message to stderr
and exits with status 1.

mtn automate file_merge left-rid left-path right-rid right-path

Arguments:
left-rid, left-fid, right-rid, right-fid specify two files to merge, by
revision and file path.

Added in:

9.0

Purpose:

Prints the result of the internal line merge on the contents of the
specified files.
This command does not just take two file ids, because the revi-
sion ids and paths are needed to check for manual merge and file
encoding attributes.

138 monotone documentation

Sample output:
If you’ve downloaded a release, see INSTALL for installation
instructions. If you’ve checked this out, the generated files are not
included, and you must use "autoreconf --install" to create them.

"make html" for docs, or read the .info file and / or man page.

Output format:
The file merge results are output without modification.

Error conditions:
If either file id is unknown or invalid, or if the internal line merger
fails, prints an error message to stderr and exits with status 1.

mtn automate get_option option

Arguments:
The option argument specifies the option name of the option to be
output.

Added in:

3.1

Purpose:

Prints an option from MTN/option of the current workspace.

Sample output:
net.venge.monotone

Output format:
The option value is written out without modification.

Error conditions:
If the option is unknown, prints an error message to stderr and
exits with status 1.

mtn automate keys

Arguments:
None.

Added in:

1.1

Purpose:

Print all keys in basic io format.

Sample output:
name "tbrownaw@gmail.com"

public_hash [475055ec71ad48f5dfaf875b0fea597b5cbbee64]
private_hash [7f76dae3f91bb48f80f1871856d9d519770b7f8a]

public_location "database" "keystore"
private_location "keystore"

Chapter 5: Command Reference 139

name "tomfa@debian.org"
public_hash [3ac4afcd86af28413b0a23b7d22b9401e15027fc]

public_location "database"

name "underwater@fishtank.net"
public_hash [115fdc73d87a5e9901d018462b21a1f53eca33a1]
private_hash [b520d2cfe7d30e4ea1725fc4f34646fc5469b13d]

public_location "keystore"
private_location "keystore"

Output format:
For each key, a basic io stanza is printed. The public location and
private location items may have multiple values as shown above
for public location, one value for each place that the key is stored.
If the private key does not exist, then the private hash and pri-
vate location items will be absent. The keys are ordered alphabet-
ically by name.

Error conditions:
None.

mtn automate packet_for_rdata id

Arguments:
The id specifies the revision to output an rdata packet for.

Added in:

2.0

Purpose:

Prints the revision data in packet format

Sample output:
[rdata bdf3b10b5df0f17cc6c1b4b3351d84701bda59ed]
H4sIAAAAAAAA/0XQS27DMAwE0L1PIfgArb4kte62NzACg5SoJEBsF7aRurev0UVzgJl5mLas
E+/jU9ftvsymd33Xzfo9Tjzfm267GSgGwVarz6Valx0KtFYwii9VqUFCqJQ5X7puedRx1ef9
r2rwHlSbi+BUSrF4xn1p0RInkmxTbmwREp/BL97LzfQfN56v+rlc+860dZnMED01jhILkURJ
Ul0KPpGN1ueUwDHyiXF66Ywx+2IGD+0Uqg8aCzikAEzZNRXPmJKlkhMxSHuNzrofx/uq2/J4
6njV/bZsu/zMPOlbOY4XJSD5KOrwXGdwpDGdfotZayQHKTAi5fRPqUWKcAMMIQfAjOK0nkfm
6tFacjYgBPV46X4BtlpiNYUBAAA=
[end]

Output format:
Revision data in monotone read compatible packet format.

Error conditions:
If id is unknown or invalid prints an error message to stderr and
exits with status 1.

mtn automate packet_for_certs id

Arguments:
The id specifies the revision to output cert packets for.

140 monotone documentation

Added in:

2.0

Purpose:

Prints the certs associated with a revision in packet format

Sample output:
[rcert bdf3b10b5df0f17cc6c1b4b3351d84701bda59ed

branch
njs@pobox.com
bmV0LnZlbmdlLm1vbm90b25l]

K90i1XHHmaMEMuwbPifFweLThJl0m7jigh2Qq6Z7TBwNJ6IMOjXWCizv73cacZ1CtzxFDVwQ
SlqhNWiPQWxdcMp+Uuo+V8IFMKmvxVSTuVDukLMuNAQqpGL5S+a+tEj68NMq+KLKuL8kAAPc
RoFD7GQlTS35S3RHWA4cnvqn+8U=
[end]
[rcert bdf3b10b5df0f17cc6c1b4b3351d84701bda59ed

date
njs@pobox.com
MjAwNi0wNC0wOFQxMTo1MDowMA==]

araz9A8x6AlK6m6UhwnhUhk7cdyxeE2nvzj2gwaDvkaBxOq4SN23/wnaPqUXx1Ddn8smzyRY
HN08xloYc0yNChp3wjbqx20REcsTg3XE4rN/sgCbqqw5hVT22a5ZhqkfkDeoeJvan0R0UBax
ngKYo9eLuABNlmFX2onca75JW1E=
[end]
[rcert bdf3b10b5df0f17cc6c1b4b3351d84701bda59ed

author
njs@pobox.com
bmpzQHBvYm94LmNvbQ==]

BLPOYhgLsAN+w7CwOsv9GfXnG3u7RNF1DTrWdn0AnYE1e+ptgTeMVWUI18H4OGL0B7wm08rv
Pxk/hvsb8fBn1Kf5HDDO2pbjJ0xVzI9+p+TR0y5jJNZlVSTj+nvtPgvK9NzsdooYWnwlWmJv
bOkAzQcZb8NMh8pbQkdHbR5uzMo=
[end]
[rcert bdf3b10b5df0f17cc6c1b4b3351d84701bda59ed

changelog
njs@pobox.com
MjAwNi0wNC0wOCAgTmF0aGFuaWVsIFNtaXRoICA8bmpzQHBvYm94LmNvbT4KCgkqIG5ldHh4

L3Jlc29sdmVfZ2V0aG9zdGJ5bmFtZS5jeHggKHJlc29sdmVfaG9zdG5hbWUpOiAjaWZkZWYg
b3V0CglXaW4zMi1pbmNvbXBhdGlibGUgZXJyb3IgcmVwb3J0aW5nIGNhbGwuCg==]
Ncl4L/oEPctzVQixTKA6FrLceeHnLiXfeyeFDNmtUFYg9BMUcjWkeyKmaWknLvOcHortxjto
K6pQ9E8S7zI+TpzFAhssg5a///rFL0+2GJU3t6pcHs6LC0Q4tbqzwKd/5+8GwT1gphbM1wm7
KuzKthwqD3pp49GbgTrp8iWMTr0=
[end]

Output format:
Cert data in monotone read compatible packet format.

Error conditions:
If id is unknown or invalid prints an error message to stderr and
exits with status 1.

Chapter 5: Command Reference 141

mtn automate packet_for_fdata id

Arguments:
The id specifies the file to output an fdata packet for.

Added in:

2.0

Purpose:

Prints the file data in packet format

Sample output:
[fdata 229c7f621b65f7e4970ae5aaec993812b9daa1d4]
H4sIAAAAAAAA/z2OO27DMBBEe51ioMaNrJzBpQAjTXKBBTW0CJPcgFw6yO1DCkG62Q/em83j
R9vlRez6naPKzh2CwkipXFBJbO8fn7f7HV4LQq4mMYoFzdMYSnMj1xXY/lnuoHt2kB2hQpst
PREPZhaxvvchskIKkdU6xsXWvQsk76MOUquGVolZmmmh0+xxvf7JZ5jCFXbU4KZ1muYkT+Kw
FOez5q6uLuh9+9eoQawhez3Fp+VtHJNkfMmDHfALzWYfcAgBAAA=
[end]

Output format:
File data in monotone read compatible packet format.

Error conditions:
If id is unknown or invalid prints an error message to stderr and
exits with status 1.

mtn automate packet_for_fdelta from-id to-id

Arguments:
The from-id specifies the file to use as the base of the delta, and
to-id specifies the file to use as the target of the delta.

Added in:

2.0

Purpose:

Prints the file delta in packet format

Sample output:
[fdelta 597049a62d0a2e6af7df0b19f4945ec7d6458727

229c7f621b65f7e4970ae5aaec993812b9daa1d4]
H4sIAAAAAAAA/0WOy0oEMRBF9/mKS2/c9LQg4t5lw+BGf6BIKtNhkpSkKop/b9II7m49OOfu
eHp5dnvEj/SHL0aQ75qFAgcQGmcm5RXKjP3t/eP1ekWUhlTVKGeyJNXNoXU/s27AP8sf7O8D
ZEdSSLd1JMaNKzeysY8ps4Iao4oNjM99eFdQDbMOSldDV8ZC3aSxlxpxufzJF5jANx6oyS2b
c0uhO+OwkpezZhCvK0bf8TVrMLZUo5zi0/I4j4UqPunGA+B+AfHvKEIPAQAA
[end]

Output format:
File delta data in monotone read compatible packet format.

Error conditions:
If from-id or to-id is unknown or invalid prints an error message to
stderr and exits with status 1.

142 monotone documentation

mtn automate get_content_changed id file

Arguments:
The id specifies a revision ID, from which content change calcula-
tions will be based. and file specifies the file for which to calculate
revisions in which it was last changed.

Added in:

4.0

Purpose:

Returns a list of revision IDs in which the content was most recently
changed, relative to the revision ID specified as id. This equates to
a content mark following the *-merge algorithm.

Sample output:
content_mark [276264b0b3f1e70fc1835a700e6e61bdbe4c3f2f]

Output format:
Zero or more basic io stanzas, each specifying a revision ID in which
a content mark is set.
The complete format:
’content_mark’

the hexadecimal id of the revision the content mark is attached to

Error conditions:
If id or file is unknown or invalid prints an error message to stderr
and exits with status 1.

mtn automate get_corresponding_path source_id file target_id

Arguments:
The source id specifies a revision ID in which file is current ex-
tant. and file specifies the file whose name in target id is to be
determined; target id specifies a revision ID.

Added in:

4.0

Purpose:

Given a the file name file in the source revision source id, a filename
will if possible be returned naming the file in the target revision tar-
get id. This allows the same file to be matched between revisions,
accounting for renames and other changes.

Sample output:
file "foo"

Output format:
Zero or one basic io stanzas. Zero stanzas will be output if the file
does not exist within the target revision; this is not considered an
error. If the file does exist in the target revision, a single stanza
with the following details is output.
The complete format:

Chapter 5: Command Reference 143

’file’
the file name corresponding to "file name" (arg 2) in the target revision

Error conditions:
If the revision IDs source id or target id are unknown or invalid
prints an error message to stderr and exits with status 1. If the file
path file does not exist in the revision source id or is invalid, prints
an error message to stderr and exits with status 1. Note that file
not existing in the revision target id is not an error.

mtn automate get_db_variables [domain]

Arguments:
The optional domain restricts the output to variables only within
this domain.

Changes:

• 7.0 – converted output to basic io, renamed to
’get db variables’

• 4.1 – added as ’db get’

Purpose:

Reads and outputs database variables. For more information about
variables, see Section 3.9 [Vars], page 61.

Sample output:
domain "database"
entry "default-exclude-pattern" ""
entry "default-include-pattern" "net.venge.monotone*"
entry "default-server" "monotone.ca"

domain "known-servers"
entry "monotone.ca" "3e6f5225bc2fffacbc20c9de37ff2dae1e20892e"
entry "monotone.mtn-host.prjek.net" "a52f85615cb2445989f525bf17a603250381a751"
entry "venge.net" "70a0f283898a18815a83df37c902e5f1492e9aa2"

Output format:
basic io-formatted stanzas. Each stanza starts with a ’domain’,
followed by one or more ’entry’ lines. Each ’entry’ contains the
name and the value of the respective database variable.

Error conditions:
If the domain is unknown or no variables where found, prints an
error message to stderr and exits with status 1.

mtn automate set_db_variable domain name value

Arguments:
The domain and name specify the database variable which is
changed to value.

Changes:

• 7.0 – renamed to ’set db variable’

144 monotone documentation

• 4.1 – added as ’db set’

Purpose:

Change a database variable, see also Section 3.9 [Vars], page 61.

Sample usage:
mtn automate set_db_variable database default-server off.net

Output format:
No output.

Error conditions:
None.

mtn automate drop_db_variables domain [name]

Arguments:
The domain and name specify the database variable which should
be dropped. If name is ommitted, all database variables in the
domain are dropped.

Added in:

7.0

Purpose:

Drops one or more database variables, see also Section 3.9 [Vars],
page 61.

Sample usage:
mtn automate drop_db_variables known-servers

Output format:
No output.

Error conditions:
If the specific variable or any variables in the given domain are not
found, prints to stderr and exits with status 1.

mtn automate put_file [base-id] contents

Arguments:
The optional base-id specifies a file-id on which the contents are
based on. This is used for delta encoding. contents are the contents
of the new file.

Added in:

4.1

Purpose:

Preparation of a workspace-less commit. See also automate put_
revision. Normally used via automate stdio.

Sample output:
70a0f283898a18815a83df37c902e5f1492e9aa2

Chapter 5: Command Reference 145

Output format:
The sha1 sum of the contents, hex encoded.

Error conditions:
If the optional base id is unknown prints an error message to stderr
and exits with status 1.

mtn automate put_revision revision-data

Arguments:
revision-data is the new revision. See example below. Note that the
new manifest entry is ignored – put_revision will ignore whatever
you put here and calculate the correct manifest id itself. (However,
for now, you must put 40 hex digits here – it’s just that which
particular digits you put are entirely irrelevant. All zeros is a good
choice.) Monotone will also canonicalize your whitespace automati-
cally. You do not need to worry about getting just the right amount
of indentation in front of each line. However, everything else about
your revision must be valid.

Added in:

4.1

Purpose:

Workspace-less commit. Normally used via automate stdio.

Sample argument:
format_version "1"

new_manifest [0000000000000000000000000000000000000004]

old_revision []

add_dir ""

add_file "foo"

content [5bf1fd927dfb8679496a2e6cf00cbe50c1c87145]

Sample output:
4c2c1d846fa561601254200918fba1fd71e6795d

Output format:
The new revision id, hex encoded.

Error conditions:
If the changeset is invalid prints an error message to stderr and
exits with status 1. May abort on invalid formats. If the revision is
already present in the database, prints a message to stderr noting
this fact, but otherwise works as normal.

mtn automate cert revision name value

Arguments:
revision is an existing revision, name is the certificate name and
value its value.

146 monotone documentation

Added in:

4.1

Purpose:

automate stdio capable variant of mtn cert. To sign the cert with
a specific private key, use ‘--key’.

Sample usage:
mtn automate cert 4c2c1d846fa561601254200918fba1fd71e6795d author tester@test.net

Output format:
No output.

Error conditions:
If the revision is invalid prints an error message to stderr and exits
with status 1.

mtn automate show_conflicts [--branch BRANCH] [left_rev right_rev]

Arguments:
Optional left and right revision ids.
If no revs are given, they default to the first two heads that would
be chosen by the merge command for the current branch. If no
workspace is present, the branch may be given by the –branch op-
tion.

Changes:

• 9.0 – Added default resolution for file content conflicts, user
resolutions for others. directory_loop_created changed to
directory_loop.

• 8.0 – initial

Purpose:

Show all conflicts between two revisions.
This is intended to be used before a merge; an external tool can
guide the user thru resolving each conflict in turn, then do the
merge.
The same file format is output by the conflicts store command,
which also allows specifying user conflict resolutions. The file syn-
tax for the resolutions is given here, so an external tool can set
them directly.
For more information on conflicts, Section 3.6 [Merge Conflicts],
page 53.
Note that this cannot be used to show conflicts that would occur
in an update, since in that case one revision is the workspace.

Sample output:
The output starts by listing the revisions and their common ances-
tor:

Chapter 5: Command Reference 147

left [532ab5011ea9e64aa212d4ea52363b1b8133d5ba]
right [b94a03a922c2c281a88d8988db64e76a32edb6a1]

ancestor [ead03530f5fefe50c9010157c42c0ebe18086559]

If there are no conflicts, the ancestor revision is not output, and no
conflict stanzas are output.

Attribute changed in both branches, or dropped in one:

conflict attribute
node_type "file"
attr_name "attr1"

ancestor_name "foo"
ancestor_file_id [bab2022ff2ed13501a8a83bcc6bd53f5042141be]

left_name "foo"
left_file_id [bab2022ff2ed13501a8a83bcc6bd53f5042141be]

left_attr_value "valueX"
right_name "foo"

right_file_id [bab2022ff2ed13501a8a83bcc6bd53f5042141be]
right_attr_value "valueZ"

conflict attribute
node_type "file"
attr_name "attr2"

ancestor_name "foo"
ancestor_file_id [bab2022ff2ed13501a8a83bcc6bd53f5042141be]

left_name "foo"
left_file_id [bab2022ff2ed13501a8a83bcc6bd53f5042141be]

left_attr_value "valueY"
right_name "foo"

right_file_id [bab2022ff2ed13501a8a83bcc6bd53f5042141be]
right_attr_state "dropped"

Missing root directory:

conflict missing_root
left_type "pivoted root"

ancestor_name "foo"
right_type "deleted directory"

ancestor_name "foo"

Directory deleted and/or renamed:

conflict orphaned_directory
right_type "deleted directory"

ancestor_name ""
left_type "renamed directory"

ancestor_name ""
left_name "bar"

conflict orphaned_file
right_type "deleted directory"

148 monotone documentation

ancestor_name "foo"
left_type "added file"
left_name "foo/baz"

left_file_id [f5122a7f896cb2dd7ecaa84be89c94ab09c15101]

conflict orphaned_file
right_type "deleted directory"

ancestor_name "foo"
left_type "renamed file"

ancestor_name "bar"
ancestor_file_id [ac4c6d06436632e017bb7d3ea241734e8899f8ce]

left_name "foo/baz"
left_file_id [ac4c6d06436632e017bb7d3ea241734e8899f8ce]

conflict multiple_names
left_type "renamed directory"

ancestor_name ""
left_name "aaa"
right_type "renamed directory"

ancestor_name ""
right_name "bbb"

conflict duplicate_name
left_type "renamed directory"

ancestor_name "foo"
left_name ""
right_type "renamed directory"

ancestor_name "bar"
right_name ""

conflict multiple_names
left_type "renamed directory"

ancestor_name "foo"
left_name "a/foo"
right_type "renamed directory"

ancestor_name "foo"
right_name "b/foo"

Directory loop created:

conflict directory_loop
left_type "renamed directory"

ancestor_name "foo"
left_name "bar/foo"
right_type "renamed directory"

ancestor_name "bar"
right_name "foo/bar"

Chapter 5: Command Reference 149

File content changed (this may be resolvable by the internal line
merger), file also renamed:

conflict content
node_type "file"

ancestor_name "bar"
ancestor_file_id [f0ef49fe92167fe2a086588019ffcff7ea561786]

left_name "bar"
left_file_id [08cd878106a93ce2ef036a32499c1432adb3ee0d]
right_name "bar"

right_file_id [0cf419dd93d38b2daaaf1f5e0f3ec647745b9690]
resolved_internal

conflict content
node_type "file"

ancestor_name "foo"
ancestor_file_id [50bf338804db2685a575124c8c8371d06b65c523]

left_name "bar"
left_file_id [f1bb6fff2ad16d67143d89fc374ede7abec5d437]
right_name "baz"

right_file_id [b966b2d35b99e456cb0c55e4573ef0b1b155b4a9]

resolved_internal is a conflict resolution. If the file contents in
the two revs can be successfully merged by the internal line merger,
resolved_internal is output.
File added and/or renamed:

conflict duplicate_name
left_type "added file"
left_name "bar"

left_file_id [ba4637112ee3e55a6106d647d6c4e04a6643f8eb]
right_type "added file"
right_name "bar"

right_file_id [fe6d523f607e2f2fc0f0defad3bda0351a95a337]

conflict duplicate_name
left_type "renamed file"

ancestor_name "foo"
ancestor_file_id [c6864a8456855c48afe83488a47501fe8b94bd57]

left_name "bar"
left_file_id [c6864a8456855c48afe83488a47501fe8b94bd57]
right_type "added file"
right_name "bar"

right_file_id [c809d71002ec57a2f1d10221f05993012a491436]

conflict duplicate_name
left_type "renamed file"

ancestor_name "foo"
ancestor_file_id [918f3642b57a5e2dd13ee874e3dc2518a53ab4b4]

150 monotone documentation

left_name "abc"
left_file_id [918f3642b57a5e2dd13ee874e3dc2518a53ab4b4]
right_type "renamed file"

ancestor_name "bar"
ancestor_file_id [bdf46a521d5f1dd54c31dda15e99ff6b0c80394a]

right_name "abc"
right_file_id [bdf46a521d5f1dd54c31dda15e99ff6b0c80394a]

File renamed to different names:
conflict multiple_names
left_type "renamed file"

ancestor_name "foo"
ancestor_file_id [e80910e54d0bdea1b6d295ada320b87aaf9fdc23]

left_name "bar"
left_file_id [e80910e54d0bdea1b6d295ada320b87aaf9fdc23]
right_type "renamed file"

ancestor_name "foo"
ancestor_file_id [e80910e54d0bdea1b6d295ada320b87aaf9fdc23]

right_name "baz"
right_file_id [e80910e54d0bdea1b6d295ada320b87aaf9fdc23]

Invalid file name (‘_MTN’ in root directory):
conflict invalid_name
left_type "pivoted root"

ancestor_name "foo"
right_type "added directory"
right_name "foo/_MTN"

conflict invalid_name
left_type "pivoted root"

ancestor_name "foo"
right_type "renamed file"

ancestor_name "bad/_MTN"
ancestor_file_id [629d9e5d254241abf4b46f108fb53189e314e41d]

right_name "foo/_MTN"
right_file_id [629d9e5d254241abf4b46f108fb53189e314e41d]

Revisions that don’t share a common ancestor:
left [161e426c3b0c3f98d0be225f69d6f893ce8e0442]
right [0e3260f51acd1e98c40666557eb6c0eefeae5f02]

ancestor []

conflict missing_root

conflict duplicate_name
left_type "added directory"
left_name ""
right_type "added directory"
right_name ""

Chapter 5: Command Reference 151

All possible conflict resolutions:
resolved_drop_left
resolved_drop_right
resolved_internal

resolved_rename_left file
resolved_rename_right file

resolved_user file
resolved_user_left file
resolved_user_right file

See Section 5.1.1 [Conflicts], page 83, for more information on con-
flict resolutions.

Output format:
First the revision ids of the left and right revisions, and their com-
mon ancestor, are printed in one basic io stanza.
Then each conflict is listed in a basic io stanza. Stanzas are sepa-
rated by blank lines.
Each conflict stanza starts with a conflict line, and contains up
to eleven lines. The order of the lines is not important, and may
change in future revisions, except that the first line will always be
conflict.
When the conflicts involve files, the file ids are output, so the file
contents can be retrieved efficiently via automate get_file, to aid
in conflict resolution.
Only the resolved_internal conflict resolution is output by this
command; the other conflict resolutions are inserted in a conflicts
file by conflicts resolve_first or an external tool, and read by
merge.

Error conditions:
If the revision IDs are given, but either is unknown or invalid, prints
an error message to stderr and exits with status 1.

mtn automate get_workspace_root

Arguments:
None.

Added in:

8.0

Purpose:

To show the path of the workspace root for the current directory.

Sample output:
/home/jim/juice

Output format:
A path.

152 monotone documentation

Error conditions:
If the current directory isn’t part of a workspace, prints an error to
stderr and exits with status 1.

mtn automate read_packets packet-data

Arguments:
A data packet, packet-data, as produced by mtn pubkey keyname .

Added in:

9.0

Purpose:

Store public keys (and incidentally anything else that can be rep-
resented as a packet) into the database.

Output format:
No output.

Error conditions:
An error will be produced if the argument is not a valid packet.

mtn automate lua function_name [function_args...]

Arguments:
A valid Lua function name and zero or more function arguments.
Note that string arguments need to be wrapped in another pair of
quotes, i.e. "foo" or ’foo’ will not work, but "’foo’" or ’"foo"’
will.
Complex types are also supported, anything which can be evaluated
as valid Lua expression can be given as input, including nested ta-
bles and functions, like f.e. {1,true,{[’func’] = function(...)
return ... end }}

Added in:

9.0

Purpose:

Call Lua functions, like monotone hooks, in the monotone context,
f.e. to retrieve user defaults like keys, passwords, ignorable files
and more.

Output format:
A string dump of the return value of the function, in Lua code.
The Lua types function, thread, userdata and lightuserdata
are not serialized, but set to nil in the dump.
Please note that nil values in tables are not printed since Lua does
not distinguish between unset and not existing entries in a table like
other programming languages do.

Sample output:
A single string return value:

Chapter 5: Command Reference 153

[1] = "Output";

Two numeric return values:
[1] = 3;
[2] = 4.4;

A nested table:
[1] = {

["bar"] = {
[1] = 1;
[2] = 2;
[3] = 3;

};
};

A callback function:
[1] = nil --[[function]];

Error conditions:
This command prints an error message and exists with status 1 if
the function does not exist, one or more function arguments could
not be evaluated or the function could not be called for another
reason.

154 monotone documentation

5.10 RCS

mtn rcs_import filename...

This command imports all the file versions in each RCS file listed in filename....
These files should be raw RCS files, ending in ,v. Monotone parses them
directly and inserts them into your database. Note that this does not do any
revision reconstruction, and is only useful for debugging.

mtn cvs_import pathname

This command imports all the file versions in each RCS file found in the tree
of files starting at pathname, then reconstructs the tree-wide history of logical
changes by comparing RCS time stamps and change log entries. For each logical
tree-wide change, monotone synthesizes a manifest and revision, and commits
them (along with all associated file deltas) to your database. It also copies all
change log entries, author identifiers, and date stamps to manifest certificates.
In normal use, pathname will be a CVS module, though it is possible to point
it at a directory within a module as well. Whatever directory you point it at
will become the root of monotone’s version of the tree.

Chapter 6: Hook Reference 155

6 Hook Reference

Monotone’s behavior can be customized and extended by writing hook functions, which are
written in the Lua programming language. At certain points in time, when monotone is
running, it will call a hook function to help it make a decision or perform some action. If
you provide a hook function definition which suits your preferences, monotone will execute
it. This way you can modify how monotone behaves.

You can put new definitions for any of these hook functions in a file
‘$HOME/.monotone/monotonerc’, or in your workspace in ‘_MTN/monotonerc’,
both of which will be read every time monotone runs. Definitions in ‘_MTN/monotonerc’
shadow (override) definitions made in your ‘$HOME/.monotone/monotonerc’. You can
also tell monotone to interpret extra hook functions from any other file using the
‘--rcfile=file ’ option; hooks defined in files specified on the command-line will shadow
hooks from the the automatic files. By specifying ‘--rcfile=directory ’ you can
automatically load all the files contained into directory.

Monotone provides some default hooks, see Appendix A [Default hooks], page 237 for
their complete source. When writing new hooks, it may be helpful to reuse some code from
the default ones. Since Lua is a lexically scoped language with closures, this can be achieved
with the following code:

do

local old_hook = default_hook

function default_hook(arg)

if not old_hook(arg) then

-- do other stuff

end

end

end

Now the default hook is trapped in a variable local to this block, and can only be seen
by the new hook. Since in Lua variables default to the global scope, the new hook is seen
from inside monotone.

Monotone also makes available to hook writers a number of helper functions exposing
functionality not available with standard Lua.

http://www.lua.org

156 monotone documentation

6.1 Hooks

This section documents the existing hook functions and their default definitions.

6.1.1 Event Notifications and Triggers

There are a number of hooks that are called when noteworthy events occur, such as commits
or new revisions arriving over the network. These hooks can be used to feed the events into
external notification systems, such as generating email.

By default, these hooks are undefined, so no special external actions are taken.

note_commit (new_id, revision, certs)
Called by monotone after the version new id is committed. The second param-
eter, revision is the text of the revision, what would be given by mtn automate
get_revision new_id . The third parameter, certs, is a Lua table containing
the set of certificate names and values committed along with this version. There
is no default definition for this hook.
Note that since the certs table does not contain cryptographic or trust infor-
mation, and only contains one entry per cert name, it is an incomplete source
of information about the committed version. This hook is only intended as an
aid for integrating monotone with informal commit-notification systems such
as mailing lists or news services. It should not perform any security-critical
operations.

note_netsync_start (session_id, my_role, sync_type,
remote host, remote keyname, includes, excludes)
Called by monotone before any other of the netsync notification hooks are
called. The session id helps keep track of the current netsync session in case
several are happening at the same time, and is used throughout all netsync
notification hooks.
The other arguments are:

my role

This will be either "client" or "server".

sync type

This will be one of "sync", "push", or "pull".

remote host
The network address of the remote host. At the client, this will be
the name it was told to connect to; at the server, this will use the
numerical IP address the connection was received from.

remote keyname
The name of the key being used by the other end of the connection.
This may be set to "-unknown-" at the server if the key used by
the client is not present at the server.

includes and excludes
The include and exclude patterns used by the client.

Chapter 6: Hook Reference 157

note_netsync_revision_received (new_id, revision, certs, session_id)
Called by monotone after the revision new id is received through netsync. re-
vision is the text of the revision, what would be given by mtn automate get_
revision new_id . certs is a Lua table containing one subtable for each cert
attached to the revision new id. These subtables have fields named "key",
"name", and "value", containing the signing key for the cert, the name of the
cert, and the value of the cert. There is no default definition for this hook.
session id is used together with note_netsync_start and note_netsync_end.
If you’re not interested in that type of tracking, you can ignore that variable
entirely.

note_netsync_revision_sent (rev_id, revision, certs, session_id)
Called by monotone after the revision rev id is sent through netsync. The
arguments are the same as for note netsync revision received.

note_netsync_cert_received (rev_id, key, name, value, session_id)
Called by monotone after a cert is received through netsync, if the revision that
the cert is attached to was not also received in the same netsync operation.
rev id is the revision id that the cert is attached to, key is the key that the
cert is signed with, name is the name of the cert, and value is the cert value.
There is no default definition for this hook. session id is used together with
note_netsync_start and note_netsync_end. If you’re not interested in that
type of tracking, you can ignore that variable entirely.

note_netsync_cert_sent (rev_id, key, name, value, session_id)
Called by monotone after a cert is sent through netsync, if the revision that
the cert is attached to was not also sent in the same netsync operation. The
arguments are the same as for note netsync cert received.

note_netsync_pubkey_received (keyname, session_id)
Called by monotone after a pubkey is received through netsync. keyname is the
name of the key received. There is no default definition for this hook. session id
is used together with note_netsync_start and note_netsync_end. If you’re
not interested in that type of tracking, you can ignore that variable entirely.

note_netsync_pubkey_sent (keyname, session_id)
Called by monotone after a pubkey is sent through netsync. The arguments
are the same as for note netsync pubkey received.

note_netsync_end (session_id, status,
bytes in, bytes out, certs in, certs out, revs in, revs out, keys in, keys out)

Called by monotone after all other the netsync notification hooks have been
called. This hook would usually be used for post-netsync purposes, like col-
lecting all the data from all other netsync notification hooks, make some nice
output from them and finally send the result somewhere. It could also be used
to prepare parallel databases with all the data to be displayed through some-
thing like viewmtn.

status is a three digit integer that tells whether there was an error, and if so
what kind of error it was:

158 monotone documentation

200

No error, connection successful.

211

The connection was interrupted after some data may have been
transferred.

212

The connection was interrupted before any data could be trans-
ferred.

412

The request is not permitted.

422

The client tried to use a key that the server doesn’t know about.

432

The client and server have different epochs for a branch.

512

Protocol error (source/sink confusion).

521

Protocol error (packet received at a time when it doesn’t make
sense).

532

The client did not identify itself correctly. (Possible replay attack?)

In general, 2xx means there was no error, 4xx means there was a permissions
error, and 5xx means there was a protocol error. xx1 means some data may
have been transferred, xx2 means no data was transferred, and xx0 means all
data was transferred.

note_mtn_startup (...)
Called by monotone when it is first started, this hook was added so that usage
of monotone could be monitored for user interface testing. Note that by default,
no monitoring occurs. The arguments to the hook function are the arguments
to monotone, without the initial mtn command. They can be accessed through
the lua arg variable as in this example:

function note_mtn_startup(...)

print("Beginning note_mtn_startup")

for i = 1,arg.n do

print(arg[i])

end

print("Ending note_mtn_startup")

end

Chapter 6: Hook Reference 159

6.1.2 User Defaults

These are hooks that can be used to provide smart, context-sensitive default values for a
number of parameters the user might otherwise be prompted for.

get_branch_key (branchname)
Returns a string which is the name of an rsa private key used to sign certificates
in a particular branch branchname. There is no default definition for this hook.
The command-line option ‘--key=keyname ’ overrides any value returned from
this hook function. If you have only one private key in your database, you do
not need to define this function or provide a ‘--key=keyname ’ option; monotone
will guess that you want to use the unique private key.

get_netsync_key(server, include, exclude)
Returns a string which is the name of the key to use to authenticate the given
netsync connection. When called by the serve command, server is the address
monotone is listening on, include is ‘"*"’, and exclude is ‘""’.
There is no default definition of this hook. The command-line option
‘--key=keyname ’ overrides any value returned from this hook function.

get_default_command_options(command)
Returns a table of program options, either valid for the given command or
valid global options. The command argument is given as a table of command
parts, i.e. for commands with subcommands like automate or db this argument
contains at least two elements.
Note that there is no way to "override" these default options via a given
command-line option once they’ve been set. This is especially true if you specify
options with arguments in this hook such as ‘--exclude=path ’ - no subsequent
command-line argument or ‘--exclude’ option argument will be able to replace
or remove the already excluded path.
Simple example which enables recursive directory scanning for mtn add by de-
fault:

function get_default_command_options(command)

local default_options = {}

if (command[1] == "add") then

table.insert(default_options, "--recursive")

end

return default_options

end

get_passphrase (keypair_id)
Returns a string which is the passphrase used to encrypt the private half of
keypair id in your database, using the arc4 symmetric cipher. keypair id is
a Lua string containing the label that you used when you created your key —
something like "nicole@example.com". This hook has no default definition.
If this hook is not defined or returns false, monotone will prompt you for a
passphrase each time it needs to use a private key.

get_author (branchname, keypair_id)
Returns a string which is used as a value for automatically generated author
certificates when you commit changes to branchname with the keypair identity

160 monotone documentation

keypair id. Generally this hook remains undefined, and monotone selects your
signing key name for the author certificate. You can use this hook to override
that choice, if you like.
This hook has no default definition, but a couple of possible definitions might
be:

function get_author(branchname, keypair_id)

-- Key pair identity ignored.

local user = os.getenv("USER")

local host = os.getenv("HOSTNAME")

if ((user == nil) or (host == nil)) then return nil end

return string.format("%s@%s", user, host)

end

function get_author(branchname, keypair_id)

-- Branch name ignored.

if (keypair_id == "joe@example.com") then

return "Joe Random <joe@example.com>"

end

return keypair_id

end

edit_comment (commentary, user_log_message)
Returns a log entry for a given set of changes, described in commentary. The
commentary is identical to the output of mtn status. This hook is intended to
interface with some sort of editor, so that you can interactively document each
change you make. The result is used as the value for a changelog certificate,
automatically generated when you commit changes.
The contents of ‘_MTN/log’ are read and passed as user log message. This
allows you to document your changes as you proceed instead of waiting until
you are ready to commit. Upon a successful commit, the contents of ‘_MTN/log’
are erased setting the system up for another edit/commit cycle.
For the default definition of this hook, see Appendix A [Default hooks],
page 237.

persist_phrase_ok ()
Returns true if you want monotone to remember the passphrase of a private key
for the duration of a single command, or false if you want monotone to prompt
you for a passphrase for each certificate it generates. Since monotone often
generates several certificates in quick succession, unless you are very concerned
about security you probably want this hook to return true.
The default definition of this hook is:

function persist_phrase_ok()

return true

end

use_inodeprints ()
Returns true if you want monotone to automatically enable Section 3.5 [Inode-
prints], page 52 support in all workspaces. Only affects working copies created
after you modify the hook.
The default definition of this hook is:

function use_inodeprints()

return false

end

Chapter 6: Hook Reference 161

ignore_file (filename)
Returns true if filename should be ignored while adding, dropping, or mov-
ing files. Otherwise returns false. This is most important when performing
recursive actions on directories, which may affect multiple files simultaneously.
The default definition of this hook recognises a number of common file types
and extensions for temporary and generated file types that users typically don’t
want to track. If the file ‘.mtn-ignore’ exists, this hook will read a list of regular
expressions from the file, one per line, and ignore all files matching one of these
expressions. For the default definition of this hook, see Appendix A [Default
hooks], page 237.

ignore_branch (branchname)
Returns true if branchname should be ignored while listing branches. Other-
wise returns false. This hook has no default definition, therefore the default
behavior is to list all branches.

6.1.3 Netsync Permission Hooks

These hooks are used when running a netsync server, via mtn serve. They are evaluated
by the server for each new connection, based on the certificate used for authentication by
the client. Note that a long-running server will need to be restarted in order to reload the
hook definitions if the ‘montonerc’ file is changed.

get_netsync_read_permitted (branch, identity)
Returns true if a peer authenticated as key identity should be allowed to
read from your database certs, revisions, manifests, and files associated with
branch; otherwise false. The default definition of this hook reads a file
‘read-permissions’ in the configuration directory. This file looks like

pattern "net.example.project.{private,security}*"

allow "joe@example.net"

allow "jim@example.net"

comment "everyone can read these branches"

pattern "net.example.{public,project}*"

allow "*"

This example allows everyone access to branches net.example.project and
net.example.public and their sub-branches, except for the branches in
net.example.project.security and net.example.project.private, which
are only readable by Joe and Jim.
The file is divided into stanzas of one pattern line followed by any number
of allow and deny lines, and possibly a continue line. Anything from the
unquoted word comment until the next unquoted word is ignored. A stanza is
processed if the argument to pattern is a glob that matches branch. Any keys
which match an allow line are given access, and any keys which match a deny
line are denied access. If there is a continue "true" line, then if the key is
not granted or denied access in this stanza the next matching stanza will be
processed. If there is not a continue "true" line, then any key which has not
been given access will be denied access even if it doesn’t match any deny lines.
Thus, deny lines are redundant unless there is also a continue "true" line.
If a client connects anonymously, this hook will be called with a identity of nil.

162 monotone documentation

Note that the identity value is a key ID (such as “graydon@pobox.com”) but
will correspond to a unique key fingerprint (hash) in your database. Monotone
will not permit two keys in your database to have the same ID. Make sure you
confirm the key fingerprints of each key in your database, as key ID strings are
“convenience names”, not security tokens.

get_netsync_write_permitted (identity)
Returns true if a peer authenticated as key identity should be allowed to write
into your database certs, revisions, manifests, and files; otherwise false. The
default definition of this hook reads a file ‘write-permissions’ in the config-
uration directory which contains a list of keys, one per line, which are allowed
write access. The special value * means to allow access to anyone whose public
key we already have.
If a client connects anonymously, it will be unconditionally denied write access;
this hook will not be called with a identity of nil.
Note that the identity value is a key ID (such as “graydon@pobox.com”) but
will correspond to a unique key fingerprint (hash) in your database. Monotone
will not permit two keys in your database to have the same ID. Make sure you
confirm the key fingerprints of each key in your database, as key ID strings are
“convenience names”, not security tokens.
Note also that, unlike the equivalent read permission hook, the write permission
hook does not take a branch name as an argument. There is presently no way to
selectively grant write access to different branches via netsync, for a number of
reasons. Contributions in the database from different authors can be selectively
trusted using the [Trust Evaluation Hooks], page 164 instead.

6.1.4 Netsync Transport Hooks

When a monotone client initiates a netsync connection, these hooks are called to attempt
to parse the host argument provided on the command line. If the hooks fail or return
nil, monotone will interpret the host argument as a network name (possibly with a port
number) and open a TCP socket.

get_netsync_connect_command (uri, args)
Returns a table describing a command to run to connect to the specified host.
The uri argument is a table containing between 0 and 7 components:
• uri["scheme"], such as "ssh" or "file"
• uri["user"], the name of a remote user
• uri["host"], the name or address of a remote host
• uri["port"], a network port number
• uri["path"], a filesystem path
• uri["query"], for additional parameters
• uri["fragment"], to describe a sub-location within the remote resource

The args argument is a table containing between 0 and 3 components:
• args["include"], the branch pattern to include
• args["exclude"], the branch pattern to exclude

Chapter 6: Hook Reference 163

• args["debug"], whether to run the connection in debug mode

The default definition of this hook follows:

function get_netsync_connect_command(uri, args)

local argv = nil

if uri["scheme"] == "ssh"

and uri["host"]

and uri["path"] then

argv = { "ssh" }

if uri["user"] then

table.insert(argv, "-l")

table.insert(argv, uri["user"])

end

if uri["port"] then

table.insert(argv, "-p")

table.insert(argv, uri["port"])

end

table.insert(argv, uri["host"])

end

if uri["scheme"] == "file" and uri["path"] then

argv = { }

end

if argv then

table.insert(argv, get_mtn_command(uri["host"]))

if args["debug"] then

table.insert(argv, "--debug")

else

table.insert(argv, "--quiet")

end

table.insert(argv, "--db")

table.insert(argv, uri["path"])

table.insert(argv, "serve")

table.insert(argv, "--stdio")

table.insert(argv, "--no-transport-auth")

if args["include"] then

table.insert(argv, args["include"])

end

if args["exclude"] then

table.insert(argv, "--exclude")

table.insert(argv, args["exclude"])

end

end

return argv

end

164 monotone documentation

use_transport_auth (uri)
Returns a boolean indicating whether monotone should use transport authenti-
cation mechanisms when communicating with uri. If this hook fails, the return
value is assumed to be true. The form of the uri argument is a table, identical
to the table provided as an argument to get_netsync_connect_command.

Note that the return value of this hook must "match" the semantics of the
command returned by get_netsync_connect_command. In particular, if this
hook returns false, the serve command line arguments passed to the remote
end of the connection should include the ‘--no-transport-auth’ option. A
mismatch between this hook’s return value and the command line returned
by get_netsync_connect_command will cause a communication failure, as the
local and remote monotone processes will have mismatched authentication as-
sumptions.

function use_transport_auth(uri)

if uri["scheme"] == "ssh"

or uri["scheme"] == "file" then

return false

else

return true

end

end

get_mtn_command(host)
Returns a string containing the monotone command to be executed on host
when communicating over ssh. The host argument is a string containing the
name of the host to which ssh is connecting, from the server URI. This is useful
when there are multiple monotone binaries on the remote host, or the monotone
binary is not in the default path.

function get_mtn_command(host)

return "mtn"

end

6.1.5 Trust Evaluation Hooks

Monotone makes heavy use of certs to provide descriptive information about revisions. In
many projects, not all developers should have the same privileges, or be trusted for the same
purposes (indeed, some signers might be automated robots, with very specific purposes).

These hooks allow the user to configure which signers will be trusted to make which
kinds of assertions using certs. Monotone uses these certs when selecting available revisions
for commands such as update.

Each user, or even each workspace, can have their own implementation of these hooks,
and thus a different filtered view of valid revisions, according to their own preferences and
purposes.

get_revision_cert_trust (signers, id, name, val)
Returns whether or not you trust the assertion name=value on a given revision
id, given a valid signature from all the keys in signers. The signers parameter
is a table containing all the key names which signed this cert, the other three
parameters are strings.

Chapter 6: Hook Reference 165

The default definition of this hook simply returns true, which corresponds to
a form of trust where every key which is defined in your database is trusted.
This is a weak trust setting; you should change it to something stronger. A
possible example of a stronger trust function (along with a utility function for
computing the intersection of tables) is the following:

function intersection(a,b)

local s={}

local t={}

for k,v in pairs(a) do s[v] = 1 end

for k,v in pairs(b) do if s[v] ~= nil then table.insert(t,v) end end

return t

end

function get_revision_cert_trust(signers, id, name, val)

local trusted_signers = { "bob@happyplace.example.com",

"friend@trustedplace.example.com",

"myself@home.example.com" }

local t = intersection(signers, trusted_signers)

if t == nil then return false end

if (name ~= "branch" and table.getn(t) >= 1)

or (name == "branch" and table.getn(t) >= 2)

then

return true

else

return false

end

end

In this example, any revision certificate is trusted if it is signed by at least
one of three “trusted” keys, unless it is an branch certificate, in which case it
must be signed by two or more trusted keys. This is one way of requiring that
the revision has been approved by an extra “reviewer” who used the approve
command.

accept_testresult_change (old_results, new_results)
This hook is used by the update algorithm to determine whether a change in
test results between update source and update target is acceptable. The hook
is called with two tables, each of which maps a signing key – representing a
particular testsuite – to a boolean value indicating whether or not the test run
was successful. The function should return true if you consider an update from
the version carrying the old results to the version carrying the new results to
be acceptable.
The default definition of this hook follows:

function accept_testresult_change(old_results, new_results)

for test,res in pairs(old_results)

do

if res == true and new_results[test] ~= true

then

return false

end

end

return true

end

166 monotone documentation

This definition accepts only those updates which preserve the set of true test
results from update source to target. If no test results exist, this hook has no
affect; but once a true test result is present, future updates will require it. If
you want a more lenient behavior you must redefine this hook.

6.1.6 External Diff Tools

Differences between files can be shown in a number of ways, varying according to user
preference and file type. These hooks allow customisation of the way file differences are
shown.

get_encloser_pattern (file_path)
Called for each file unless diff is given the ‘--no-show-encloser’ option (or
the ‘--external’ option). file path is the pathname of the file that is being
diffed. The hook should return a string constant containing a regular expres-
sion; this regular expression will be used to find lines that, in that file, name
the “top-level” constructs enclosing each “hunk” of changes. The default is
^[[:alnum:]$_], which is correct for many programming languages; a few text
authoring packages, like Texinfo, have special regular expressions that match
their particular syntax. If you have a better regular expression for some lan-
guage, you can add it to this hook; and if you send it to the monotone de-
velopers, we will likely make it the default for that language. See Section 7.5
[Regexps], page 199, for the regular expression syntax.

external_diff (file_path, old_data, new_data, is_binary, diff_args, old_rev,
new_rev)

Called for each file when diff is given the ‘--external’ option. file path is
the pathname of the file that is being diffed. old data and new data are the
data contents of the old and the new file. If the data is binary, is binary will
be true, otherwise false. old rev and new rev are the revision IDs of the old
and new data.

If an extra arguments are given via ‘--diff-args’, the string will be passed in
as diff args. Otherwise diff args will be nil.

The default implementation of this hook calls the program diff, and if
‘--diff-args’ were not passed, takes default arguments from the Lua variable
external_diff_default_args. You can override this variable in your
configuration file, without overriding the whole hook.

6.1.7 External Merge Tools

Monotone often needs to merge together the work of multiple distributed developers, and
uses these hooks to help this process when the merge does not automatically succeed. Often
these hooks will be used to invoke an external interactive merge tool.

The Appendix A [Default hooks], page 237 include helper functions used by the hooks
below to invoke a number of external merge tools known to monotone, and you can override
or extend these hooks if you have a preferred tool, or if you have a tool specific to certain
file types.

Chapter 6: Hook Reference 167

merge3 (ancestor_path, left_path, right_path, merged_path, ancestor_text,
left_text, right_text)

This hook is called to resolve merges that monotone could not resolve automat-
ically. The actual ancestor, left, and right contents of the file are passed in the
ancestor text, left text, and right text strings. In addition, the hook is given
the names that this file had in the ancestor (ancestor path), left (left path),
and right (right path) trees, and the name it will end up having in the merged
tree (merged path). These paths are useful for merge tools that can display the
names of files in their GUI, since the actual path names are likely more mean-
ingful than the temporary file names the merge tool will actually be working
on.

Returns a string, which should be the merger of the given texts. The
default definition of this hook delegates the actual merge to the result
of [get preferred merge3 command], page 167. The default definition of
[get preferred merge3 command], page 167 checks to see if the MTN_MERGE
environment variable, or the Lua variable merger are set to the name of a
merge tool that it recognizes, and if not, then simply searches for whatever is
installed on the local system. For details, see the code in Appendix A [Default
hooks], page 237.

get_preferred_merge3_command(tbl)
Returns the results of running an external merge on three strings. tbl wraps
up the various arguments for each merge command and is always provided by
[merge3], page 166. If there is a particular editor that you would like to use to
perform merge3 operations, override this hook to specify it.

6.1.8 Selector Expansion

Monotone’s selectors are a powerful mechanism used to refer to revisions with symbolic
names or groupings. Thanks to the hooks described in this section, it is possible to use var-
ious forms of shorthand in selection strings; these hooks are designed to recognise shorthand
patterns and expand them to their full form.

For more detail on the use of selectors, see Section 3.2 [Selectors], page 47.

expand_selector (str)
Attempts to expand str as a selector. Expansion generally means providing
a type prefix for the selector, such as a: for authors or d: for dates. This
hook is called once for each element of a combined selector string (between /
separators) prior to evaluation of the selector. For the default definition of this
hook, see Appendix A [Default hooks], page 237.

expand_date (str)
Attempts to expand str as a date expression. Expansion means recognizing and
interpreting special words such as yesterday or 6 months ago and converting
them into well formed date expressions. For the default definition of this hook,
see Appendix A [Default hooks], page 237.

168 monotone documentation

6.1.9 Attribute Handling

Some files in a project are special; they may require different handling (such as binary
or structured files that should always be manually merged – see Section 3.14 [Merging],
page 68), or they may represent executable scripts or programs.

Monotone allows each file (or directory) in a repository to carry arbitrary Section 3.13
[File Attributes], page 67. Persistent attributes are stored each revision’s manifest. The
hooks in this section allow files to be automatically recognised as having certain attributes
at the time they’re added, and for custom triggers to be invoked on each file according to
its attributes when the workspace is changed.

attr_functions [attribute] (filename, value)
This is not a hook function, but a table of hook functions. Each entry in the
table attr_functions, at table entry attribute, is a function taking a file name
filename and a attribute value value. The function should “apply” the attribute
to the file, possibly in a platform-specific way.

Hook functions from this table are called for each existing attr, after any com-
mand which modifies the workspace. This facility can be used to extend mono-
tone’s understanding of files with platform-specific attributes, such as permis-
sion bits, access control lists, or special file types.

By default, there is only one entry in this table, for the mtn:execute attribute.
Its definition is:

attr_functions["mtn:execute"] =

function(filename, value)

if (value == "true") then

make_executable(filename)

end

end

attr_init_functions [attribute] (filename)
This is not a hook function, but a table of hook functions. Each entry in the
table attr_init_functions, at table entry attribute, is a function taking a file
(or directory) name filename. Each function defines the attributes that should
be set on the file named filename. This table of hook functions is called once
for each file during an add.

By default, there are only two entries in this table, for the mtn:execute and
mtn:manual_merge attributes. Their definition is:

Chapter 6: Hook Reference 169

attr_init_functions["mtn:execute"] =

function(filename)

if (is_executable(filename)) then

return "true"

else

return nil

end

end

attr_init_functions["mtn:manual_merge"] =

function(filename)

if (binary_file(filename)) then

return "true" -- binary files must be merged manually

else

return nil

end

end

The binary_file function is also defined as a Lua hook. See Appendix A
[Default hooks], page 237.

6.1.10 Validation Hooks

If there is a policy decision to make, Monotone defines certain hooks to allow a client to
validate or reject certain behaviors.

validate_commit_message (message, revision_text, branchname)
This hook is called after the user has entered his/her commit message. message
is the commit message that the user has entered and revision text is the full
text of the changes for this revision, which can be parsed with the parse basic io
function. The branchname on which the new revision will be committed if all
goes well is passed in as the third parameter. If the hook finds the commit
message satisfactory, it can return true, "". If it finds fault, then it can return
false, reason where reason is the reason the message was rejected. By default,
this hook rejects empty log messages.

6.1.11 Meta Hooks

Monotone allows the execution of arbitrary Lua hooks and functions through a special
generalized "meta hook". See automate lua for more information.

hook_wrapper (func_name, ...)
This hook is explicitely called on every execution of automate lua. It takes a
function name and zero or more string function arguments which are internally
evaluated into Lua code. It returns a dump of the return value of the called
function in Lua code on success.

170 monotone documentation

6.2 Additional Lua Functions

This section documents the additional Lua functions made available to hook writers.

alias_command(original, alias)
This function adds a new alias for a monotone command. A call to this function
would normally be placed directly in the ‘monotonerc’ file, rather than in a hook
function.

existonpath(possible_command)
This function receives a string containing the name of an external program and
returns 0 if it exists on path and is executable, -1 otherwise. As an example,
existonpath("xxdiff") returns 0 if the program xxdiff is available. On Win-
dows, this function automatically appends “.exe” to the program name. In the
previous example, existonpath would search for “xxdiff.exe”.

get_confdir()
Returns the path to the configuration directory, either implied or given with
‘--confdir’.

get_ostype()
Returns the operating system flavor as a string.

guess_binary_file_contents(filespec)
Returns true if the file appears to be binary, i.e. contains one or more of the
following characters:

0x00 thru 0x06

0x0E thru 0x1a

0x1c thru 0x1f

include(scriptfile)
This function tries to load and execute the script contained into scriptfile. It
returns true for success and false if there is an error.

includedir(scriptpath)
This function loads and executes in alphabetical order all the scripts contained
into the directory scriptpath. If one of the scripts has an error, the functions
doesn’t process the remaining scripts and immediately returns false.

includedirpattern(scriptpath, pattern)
This function loads and executes in alphabetical order all the scripts contained
into the directory scriptpath that match the given pattern. If one of the scripts
has an error, the functions doesn’t process the remaining scripts and immedi-
ately returns false.

is_executable(filespec)
This function returns true if the file is executable, false otherwise. On Windows
this function returns always false.

kill(pid [, signal])
This function calls the kill() C library function on POSIX systems and Termi-
nateProcess on Win32 (in that case pid is the process handle). If the optional
signal parameter is missing, SIGTERM will be used. Returns 0 on success, -1
on error.

Chapter 6: Hook Reference 171

make_executable(filespec)
This function marks the named file as executable. On Windows has no effect.

match(glob, string)
Returns true if glob matches str, return false otherwise.

mkstemp(template)
Like its C library counterpart, mkstemp creates a unique name and returns
a file descriptor for the newly created file. The value of template should be
a pointer to a character buffer loaded with a null-terminated string that con-
sists of contiguous, legal file ad path name characters followed by six Xs. The
function mkstemp replaces the Xs by an alpha-numeric sequence that is chosen
to ensure that no file in the chosen directory has that name. Furthermore,
subsequent calls to mkstemp within the same process each yield different file
names. Unlike other implementations, monotone mkstemp allows the template
string to contain a complete path, not only a filename, allowing users to create
temporary files outside the current directory.

Important notice:
To create a temporary file, you must use the temp_file() function, unless
you need to run monotone with the ‘--nostd’ option. temp_file() builds on
mkstemp() and creates a file in the standard TMP/TEMP directories. For the
definition of temp_file(), see Appendix A [Default hooks], page 237.

mtn_automate(...)
The mtn_automate Lua function calls the Monotone automate command passed
in its arguments. The result of the call is a pair consisting of a boolean return
code, indicating whether the call was successful or not, and a string being the
stdout output from the automate command. This function is not for use in
ordinary Lua hooks, but rather for Lua based commands as defined by the Lua
function register_command.

parse_basic_io(data)
Parse the string data, which should be in basic io format. It returns nil if it
can’t parse the string; otherwise it returns a table. This will be a list of all
statements, with each entry being a table having a "name" element that is the
symbol beginning the statement and a "values" element that is a list of all the
arguments.

For example, given this as input:
thingy "foo" "bar"

thingy "baz"

spork

frob "oops"

The output table will be:
{

1 = { name = "thingy", values = { 1 = "foo", 2 = "bar" } },

2 = { name = "thingy", values = { 1 = "baz" } },

3 = { name = "spork", values = { } },

4 = { name = "frob", values = { 1 = "oops" } }

}

172 monotone documentation

regex.search(regexp, string)
Returns true if a match for regexp is found in str, return false otherwise. See
Section 7.5 [Regexps], page 199, for the syntax of regexp.

register_command(name, params, abstract, description, function)
Add a command named name to the user command group in monotone. This
function is normally called directly from a ‘monotonerc’ file rather than a hook.
When the user issues the registered command, monotone will call the lua func-
tion name supplied. That function would then normally use mtn automate()
calls to service the request.

server_request_sync(what, address, include, exclude)
Initiate a netsync connection to the server at address, with the given include
and exclude patterns, of type ‘sync’, ‘push’, or ‘pull’, as given by the what
argument.
When called by a monotone instance which is not running the ‘serve’ command,
this function has no effect.

sleep(seconds)
Makes the calling process sleep for the specified number of seconds.

spawn(executable [, args ...])
Starts the named executable with the given arguments. Returns the process
PID on POSIX systems, the process handle on Win32 or -1 if there was an
error. Calls fork/execvp on POSIX, CreateProcess on Win32.
Important notice:
To spawn a process and wait for its completion, use the execute() function,
unless you need to run monotone with the ‘--nostd’ option. execute() builds
on spawn() and wait() in a standardized way.

spawn_pipe(executable [, args ...])
Like spawn(), but returns three values, where the first two are the subprocess’
standard input and standard output, and the last is the process PID on POSIX
systems, the process handle on Win32 or -1 if there was an error.

spawn_redirected(infile, outfile, errfile, executable [, args ...])
Like spawn(), but with standard input, standard output and standard error
redirected to the given files.

wait(pid)
Wait until the process with given PID (process handle on Win32) exits. Returns
two values: a result value and the exit code of the waited-for process. The exit
code is meaningful only if the result value is 0.

Chapter 7: Special Topics 173

7 Special Topics

This chapter describes some “special” issues which are not directly related to monotone’s
use, but which are occasionally of interest to people researching monotone or trying to learn
the specifics of how it works. Most users can ignore these sections.

174 monotone documentation

7.1 Internationalization

Monotone initially dealt with only ASCII characters, in file path names, certificate names,
key names, and packets. Some conservative extensions are provided to permit internation-
alized use. These extensions can be summarized as follows:

• Monotone uses GNU gettext to provide localized progress and error messages. Trans-
lations may or may not exist for your locale, but the infrastructure is present to add
them.

• All command-line arguments are mapped from your local character set to UTF-8 before
processing. This means that monotone can only handle key names, file names and
certificate names which map cleanly into UTF-8.

• Monotone’s control files are stored in UTF-8. This includes: revisions and manifests,
both inside the database and when written to the ‘_MTN/’ directory of the workspace;
the ‘_MTN/options’ and ‘_MTN/revision’ files. Converting these files to any other
character set will cause monotone to break; do not do so.

• File path names in the workspace are converted to the locale’s character set (determined
via the LANG or CHARSET environment variables) before monotone interacts with
the file system. If you are accustomed to being able to use file names in your locale’s
character set, this should “just work” with monotone.

• Key and cert names, and similar “name-like” entities are subject to some cleaning
and normalization, and conversion into network-safe subsets of ASCII (typically ACE).
Generally, you should be able to use “sensible” strings in your locale’s character set as
names, but they may appear mangled or escaped in certain contexts such as network
transmission.

• Monotone’s transmission and storage forms are otherwise unchanged. Packets and
database contents are 7-bit clean ASCII.

The remainder of this section is a precise specification of monotone’s internationalization
behavior.

General Terms

Character set conversion
The process of mapping a string of bytes representing wide characters from
one encoding to another. Per-file character set conversions are specified by a
Lua hook get_charset_conv which takes a filename and returns a table of
two strings: the first represents the "internal" (database) charset, the second
represents the "external" (file system) charset.

LDH Letters, digits, and hyphen: the set of ASCII bytes 0x2D, 0x30..0x39,
0x41..0x5A, and 0x61..0x7A.

stringprep RFC 3454, a general framework for mapping, normalizing, prohibiting and bidi-
rectionality checking for international names prior to use in public network
protocols.

nameprep RFC 3491, a specific profile of stringprep, used for preparing international do-
main names (IDNs)

Chapter 7: Special Topics 175

punycode RFC 3492, a "bootstring" encoding of Unicode into ASCII.

IDNA RFC 3490, international domain names for applications, a combination of the
above technologies (nameprep, punycoding, limiting to LDH characters) to form
a specific "ASCII compatible encoding" (ACE) of Unicode, signified by the pres-
ence of an "unlikely" ACE prefix string "xn–". IDNA is intended to make it
possible to use Unicode relatively "safely" over legacy ASCII-based applica-
tions. the general picture of an IDNA string is this:

{ACE-prefix}{LDH-sanitized(punycode(nameprep(UTF-8-string)))}

It is important to understand that IDNA encoding does not preserve the input
string: it both prohibits a wide variety of possible strings and normalizes non-
equal strings to supposedly "equivalent" forms.

By default, monotone does not decode IDNA when printing to the console
(IDNA names are ASCII, which is a subset of UTF-8, so this normal form
conversion can still apply, albeit oddly). this behavior is to protect users against
security problems associated with malicious use of "similar-looking" characters.
If the hook display_decoded_idna returns true, IDNA names are decoded for
display.

Filenames

• Filenames are subject to normal form conversion.

• Filenames are subject to an additional normal form stage which adjusts for platform
name semantics, for example changing the Windows 0x5C ’\’ path separator to 0x2F
’/’. This extra processing is performed by boost::filesystem.

• FIXME: Monotone does not properly handle case insensitivity on Windows.

• A filename (in normal form) is constrained to be a nonempty sequence of path compo-
nents, separated by byte 0x2F (ASCII /), and without a leading or trailing 0x2F.

• A path component is a nonempty sequence of any UTF-8 character codes except the
path separator byte 0x2F and any ASCII "control codes" (0x00..0x1F and 0x7F).

• The path components "." and ".." are prohibited.

• Manifests and revisions are constructed from the normal form (UTF-8). The
LC COLLATE locale category is not used to sort manifest or revision entries.

File contents

• Files are subject to character set conversion and line ending conversion.

• File SHA1 values are calculated from the internal form of the conversions. If the
external form of a file differs from the internal form, running a 3rd party program such
as sha1sum will produce different results than those entries shown in a corresponding
manifest.

UI messages

UI messages are displayed via calls to gettext().

176 monotone documentation

Host names

Host names are read on the command-line and subject to normal form conversion. Host
names are then split at 0x2E (ASCII ’.’), each component is subject to IDNA encoding, and
the components are rejoined.

After processing, host names are stored internally as ASCII. The invariant is that a host
name inside monotone contains only sequences of LDH separated by 0x2E.

Cert names

Read on the command line and subject to normal form conversion and IDNA encoding as
a single component. The invariant is that a cert name inside monotone is a single LDH
ASCII string.

Cert values

Cert values may be either text or binary, depending on the return value of the hook cert_is_
binary. If binary, the cert value is never printed to the screen (the literal string "<binary>"
is displayed, instead), and is never subjected to line ending or character conversion. If
text, the cert value is subject to normal form conversion, as well as having all UTF-8 codes
corresponding to ASCII control codes (0x0..0x1F and 0x7F) prohibited in the normal form,
except 0x0A (ASCII LF).

Var domains

Read on the command line and subject to normal form conversion and IDNA encoding as
a single component. The invariant is that a var domain inside monotone is a single LDH
ASCII string.

Var names and values

Var names and values are assumed to be text, and subject to normal form conversion.

Key names

Read on the command line and subject to normal form conversion and IDNA encoding as an
email address (split and joined at ’.’ and ’@’ characters). The invariant is that a key name
inside monotone contains only LDH, 0x2E (ASCII ’.’) and 0x40 (ASCII ’@’) characters.

Packets

Packets are 7-bit ASCII. The characters permitted in packets are the union of these character
sets:
• The 65 characters of base64 encoding (64 coding + "=" pad).
• The 16 characters of hex encoding.
• LDH, ’@’ and ’.’ characters, as required for key and cert names.
• ’[’ and ’]’, the packet delimiters.
• ASCII codes 0x0D (CR), 0x0A (LF), 0x09 (HT), and 0x20 (SP).

Chapter 7: Special Topics 177

7.2 Hash Integrity

Some proponents of a competing, proprietary version control system have suggested, in a
usenix paper, that the use of a cryptographic hash function such as sha1 as an identifier
for a version is unacceptably unsafe. This section addresses the argument presented in that
paper and describes monotone’s additional precautions.

To summarize our position:

• the analysis in the paper is wrong,
• even if it were right, monotone is sufficiently safe.

The analysis is wrong

The paper displays a fundamental lack of understanding about what a cryptographic hash
function is, and how it differs from a normal hash function. Furthermore it confuses acci-
dental collision with attack scenarios, and mixes up its analysis of the risk involved in each.
We will try to untangle these issues here.

A cryptographic hash function such as sha1 is more than just a uniform spread of inputs
to an output range. Rather, it must be designed to withstand attempts at:

• reversal: deriving an input value from the output
• collision: finding two different inputs which hash to the same output

Collision is the problem the paper is concerned with. Formally, an n-bit cryptographic
hash should cost 2n work units to collide against a given value, and sqrt(2n) tries to find
a random pair of colliding values. This latter probability is sometimes called the hash’s
“birthday paradox probability”.

Accidental collision

One way of measuring these bounds is by measuring how single-bit changes in the input
affect bits in the hash output. The sha1 hash has a strong avalanche property, which
means that flipping any one bit in the input will cause on average half the 160 bits in the
output code to change. The fanciful val1 hash presented in the paper does not have such
a property — flipping its first bit when all the rest are zero causes no change to any of the
160 output bits — and is completely unsuited for use as a cryptographic hash, regardless of
the general shape of its probability distribution.

The paper also suggests that birthday paradox probability cannot be used to measure the
chance of accidental sha1 collision on “real inputs”, because birthday paradox probability
assumes a uniformly random sample and “real inputs” are not uniformly random. The
paper is wrong: the inputs to sha1 are not what is being measured (and in any case
can be arbitrarily long); the collision probability being measured is of output space. On
output space, the hash is designed to produce uniformly random spread, even given nearly
identical inputs. In other words, it is a primary design criterion of such a hash that a
birthday paradox probability is a valid approximation of its collision probability.

The paper’s characterization of risk when hashing “non-random inputs” is similarly
deceptive. It presents a fanciful case of a program which is storing every possible 2kb block
in a file system addressed by sha1 (the program is trying to find a sha1 collision). While
this scenario will very likely encounter a collision somewhere in the course of storing all

http://www.usenix.org/events/hotos03/tech/full_papers/henson/henson_html/

178 monotone documentation

such blocks, the paper neglects to mention that we only expect it to collide after storing
about 280 of the 216384 possible such blocks (not to mention the requirements for compute
time to search, or disk space to store 280 2kb blocks).

Noting that monotone can only store 241 bytes in a database, and thus probably some
lower number (say 232 or so) active rows, we consider such birthday paradox probability
well out of practical sight. Perhaps it will be a serious concern when multi-yottabyte hard
disks are common.

Collision attacks

Setting aside accidental collisions, then, the paper’s underlying theme of vulnerability rests
on the assertion that someone will break sha1. Breaking a cryptographic hash usually
means finding a way to collide it trivially. While we note that sha1 has in fact resisted
attempts at breaking for 8 years already, we cannot say that it will last forever. Someone
might break it. We can say, however, that finding a way to trivially collide it only changes
the resistance to active attack, rather than the behavior of the hash on benign inputs.

Therefore the vulnerability is not that the hash might suddenly cease to address benign
blocks well, but merely that additional security precautions might become a requirement
to ensure that blocks are benign, rather than malicious. The paper fails to make this
distinction, suggesting that a hash becomes “unusable” when it is broken. This is plainly
not true, as a number of systems continue to get useful low collision hashing behavior —
just not good security behavior — out of “broken” cryptographic hashes such as MD4.

Monotone is probably safe anyways

Perhaps our arguments above are unconvincing, or perhaps you are the sort of person who
thinks that practice never lines up with theory. Fair enough. Below we present practical
procedures you can follow to compensate for the supposed threats presented in the paper.

Collision attacks

A successful collision attack on sha1, as mentioned, does not disrupt the probability features
of sha1 on benign blocks. So if, at any time, you believe sha1 is “broken”, it does not mean
that you cannot use it for your work with monotone. It means, rather, that you cannot
base your trust on sha1 values anymore. You must trust who you communicate with.

The way around this is reasonably simple: if you do not trust sha1 to prevent malicious
blocks from slipping into your communications, you can always augment it by enclosing your
communications in more security, such as tunnels or additional signatures on your email
posts. If you choose to do this, you will still have the benefit of self-identifying blocks,
you will simply cease to trust such blocks unless they come with additional authentication
information.

If in the future sha1 (or, indeed, rsa) becomes accepted as broken we will naturally
upgrade monotone to a newer hash or public key scheme, and provide migration commands
to recalculate existing databases based on the new algorithm.

Similarly, if you do not trust our vigilance in keeping up to date with cryptography
literature, you can modify monotone to use any stronger hash you like, at the cost of
isolating your own communications to a group using the modified version. Monotone is free

Chapter 7: Special Topics 179

software, and runs atop botan, so it is both legal and relatively simple to change it to use
some other algorithm.

180 monotone documentation

7.3 Rebuilding ancestry

As described in Section 1.3 [Historical records], page 6, monotone revisions contain the sha1
hashes of their predecessors, which in turn contain the sha1 hashes of their predecessors,
and so on until the beginning of history. This means that it is mathematically impossible
to modify the history of a revision, without some way to defeat sha1. This is generally
a good thing; having immutable history is the point of a version control system, after all,
and it turns out to be very important to building a distributed version control system like
monotone.

It does have one unfortunate consequence, though. It means that in the rare occasion
where one needs to change a historical revision, it will change the sha1 of that revision,
which will change the text of its children, which will change their sha1s, and so on; basically
the entire history graph will diverge from that point (invalidating all certs in the process).

In practice there are two situations where this might be necessary:

• bugs: monotone has occasionally allowed nonsense, uninterpretable changesets to be
generated and stored in the database, and this was not detected until further work had
been based off of them.

• advances in crypto: if or when sha1 is broken, we will need to migrate to a different
secure hash.

Obviously, we hope neither of these things will happen, and we’ve taken lots of precau-
tions against the first recurring; but it is better to be prepared.

If either of these events occur, we will provide migration commands and explain how to
use them for the situation in question; this much is necessarily somewhat unpredictable.
In the past we’ve used the (now defunct) db rebuild command, and more recently the db
rosterify command, for such changes as monotone developed. These commands were used
to recreate revisions with new formats. Because the revision id’s changed, all the existing
certs that you trust also must be reissued, signed with your key.1

While such commands can reconstruct the ancestry graph in your database, there are
practical problems which arise when working in a distributed work group. For example,
suppose our group consists of the fictional developers Jim and Beth, and they need to
rebuild their ancestry graph. Jim performs a rebuild, and sends Beth an email telling her
that he has done so, but the email gets caught by Beth’s spam filter, she doesn’t see it, and
she blithely syncs her database with Jim’s. This creates a problem: Jim and Beth have
combined the pre-rebuild and post-rebuild databases. Their databases now contain two
complete, parallel (but possibly overlapping) copies of their project’s ancestry. The “bad”
old revisions that they were trying to get rid of are still there, mixed up with the “good”
new revisions.

To prevent such messy situations, monotone keeps a table of branch epochs in each
database. An epoch is just a large bit string associated with a branch. Initially each
branch’s epoch is zero. Most monotone commands ignore epochs; they are relevant in only
two circumstances:

1 Regardless of who originally signed the certs, after the rebuild they will be signed by you. This means
you should be somewhat careful when rebuilding, but it is unavoidable — if you could sign with other
people’s keys, that would be a rather serious security problem!

Chapter 7: Special Topics 181

• When monotone rebuilds ancestry, it generates a new random epoch for each branch
in the database.

• When monotone runs netsync between databases, it checks to make sure that all
branches involved in the synchronization have the same epochs. If any epochs dif-
fer, the netsync is aborted with no changes made to either database. If either side is
seeing a branch for the first time, it adopts the epoch of the other side.

Thus, when a user rebuilds their ancestry graph, they select a new epoch and thus
effectively disassociate with the group of colleagues they had previously been communicating
with. Other members of that group can then decide whether to follow the rebuild user into
a new group — by pulling the newly rebuilt ancestry — or to remain behind in the old
group.

In our example, if Jim and Beth have epochs, Jim’s rebuild creates a new epoch for their
branch, in his database. This causes monotone to reject netsync operations between Jim
and Beth; it doesn’t matter if Beth loses Jim’s email. When she tries to synchronize with
him, she receives an error message indicating that the epoch does not match. She must
then discuss the matter with Jim and settle on a new course of action — probably pulling
Jim’s database into a fresh database on Beth’s end – before future synchronizations will
succeed.

Best practices

The previous section described the theory and rationale behind rebuilds and epochs. Here
we discuss the practical consequences of that discussion.

If you decide you must rebuild your ancestry graph — generally by announcement of
a bug from the monotone developers — the first thing to do is get everyone to sync their
changes with the central server; if people have unshared changes when the database is
rebuilt, they will have trouble sharing them afterwards.

Next, the project should pick a designated person to take down the netsync server,
rebuild their database, and put the server back up with the rebuilt ancestry in it. Everybody
else should then pull this history into a fresh database, check out again from this database,
and continue working as normal.

In complicated situations, where people have private branches, or ancestries cross or-
ganizational boundaries, matters are more complex. The basic approach is to do a local
rebuild, then after carefully examining the new revision IDs to convince yourself that the
rebuilt graph is the same as the upstream subgraph, use the special db epoch commands
to force your local epochs to match the upstream ones. (You may also want to do some
fiddling with certs, to avoid getting duplicate copies of all of them; if this situation ever
arises in real life we’ll figure out how exactly that should work.) Be very careful when doing
this; you’re explicitly telling monotone to let you shoot yourself in the foot, and it will let
you.

Fortunately, this process should be extremely rare; with luck, it will never happen at all.
But this way we’re prepared.

182 monotone documentation

7.4 Mark-Merge

Monotone makes use of the Mark-Merge (also known as *-merge) algorithm. The emails
reproduced below document the algorithm. Further information can be found at revctrl.org.

Initial mark-merge proposal

From: Nathaniel Smith <njs <at> pobox.com>
Subject: [cdv-devel] more merging stuff (bit long...)
Newsgroups: gmane.comp.version-control.codeville.devel, gmane.comp.version-control.monotone.devel
Date: 2005-08-06 09:08:09 GMT

I set myself a toy problem a few days ago: is there a really, truly,
right way to merge two heads of an arbitrary DAG, when the object
being merged is as simple as possible: a single scalar value?

I assume that I’m given a graph, and each node in the graph has a
value, and no other annotation; I can add annotations, but they have
to be derived from the values and topology. Oh, and I assume that no
revision has more than 2 parents; probably things can be generalized
to the case of indegree 3 or higher, but it seems like a reasonable
restriction...

So, anyway, here’s what I came up with. Perhaps you all can tell me
if it makes sense.

User model

Since the goal was to be "really, truly, right", I had to figure out
what exactly that meant... basically, what I’m calling a "user model"
-- a formal definition of how the user thinks about merging, to give
an operational definition of "should conflict" and "should clean
merge". My rules are these:
1) whenever a user explicitly sets the value, they express a claim

that their setting is superior to the old setting
2) whenever a user chooses to commit a new revision, they implicitly

affirm the validity of the decisions that led to that revision’s
parents
Corollary of (1) and (2): whenever a user explicitly sets the
value, they express that they consider their new setting to be
superior to _all_ old settings

3) A "conflict" should occur if, and only if, the settings on each
side of the merge express parallel claims.

This in itself is not an algorithm, or anything close to it; the hope
is that it’s a good description of what people actually want out of a
merge algorithm, expressed clearly enough that we can create an
algorithm that fits these desiderata.

http://revctrl.org/MarkMerge

Chapter 7: Special Topics 183

Algorithm

I’ll use slightly novel notation. Lower case letters represent values
that scalar the scalar takes. Upper case letters represent nodes in
the graph.

Now, here’s an algorithm, that is supposed to just be a transcription
of the above rules, one step more formal:
First, we need to know where users actively expressed an intention.
Intention is defined by (1), above. We use * to mark where this
occurred:

i) a* graph roots are always marked

a
ii) | no mark, value was not set

a

a
iii) | b != a, so b node marked

b*

a b
iv) \ /

c*
c is totally new, so marked

a a
\ /
c*

a b we’re marking places where users expressed
v) \ / intention; so b should be marked iff this

b? was a conflict (!)

a a for now I’m not special-casing the coincidental
vi) \ / clean merge case, so let’s consider this to be

a? a subclass of (v).

That’s all the cases possible. So, suppose we go through and
annotate our graph with *s, using the above rules; we have a graph
with some *s peppered through it, each * representing one point that
a user took action.

Now, a merge algorithm per se: Let’s use *(A) to mean the unique
nearest marked ancestor of node A. Suppose we want to merge A and

184 monotone documentation

B. There are exactly 3 cases:
- *(A) is an ancestor of B, but not vice versa: B wins.
- *(B) is an ancestor of A, but not vice versa: A wins.
- *(A) is _not_ an ancestor of B, and vice versa: conflict,
escalate to user

Very intuitive, right? If B supercedes the intention that led to A,
then B should win, and vice-versa; if not, the user has expressed
two conflicting intentions, and that, by definition, is a conflict.

This lets us clarify what we mean by "was a conflict" in case (v)
above. When we have a merge of a and b that gives b, we simple
calculate *(a); if it is an ancestor of ’b’, then we’re done, but if
it isn’t, then we mark the merge node. (Subtle point: this is
actually not _quite_ the same as detecting whether merging ’a’ and
’b’ would have given a conflict; if we somehow managed to get a
point in the graph that would have clean merged to ’a’, but in fact
was merged to ’b’, then this algorithm will still mark the merge
node.) For cases where the two parents differ, you have to do this
using the losing one; for cases where the two parents are the same,
you should check both, because it could have been a clean merge two
different ways. If *(a1) = *(a2), i.e., both sides have the same
nearest marked ancestor, consider that a clean merge.

That’s all.

Examples

Of course, I haven’t shown you this is well-defined or anything, but
to draw out the suspense a little, have some worked examples (like
most places in this document, I draw graphs with two leaves and assume
that those are being merged):

graph:
a*

/ \
a b*

result: *(a) is an ancestor of b, but *(b) is not an ancestor of a;
clean merge with result ’b’.

graph:
a*
/ \
b* c*

result: *(b) = b is not an ancestor of c, and *(c) = c is not an
ancestor of c; conflict.

Chapter 7: Special Topics 185

graph:
a*
/ \
b* c* <--- these are both marked, by (iii)
|\ /|
| X |
|/ \|
b* c* <--- which means these were conflicts, and thus marked

result: the two leaves are both marked, and thus generate a conflict,
as above.

Right, enough of that. Math time.

Math

Theorem: In a graph marked following the above rules, every node N
will have a unique least marked ancestor M, and the values of M and N
will be the same.

Proof: By downwards induction on the graph structure. The base case
are graph roots, which by (i) are always marked, so the statement is
trivially true. Proceeding by cases, (iii) and (iv) are trivially
true, since they produce nodes that are themselves marked. (ii) is
almost as simple; in a graph ’a’ -> ’a’, the child obviously
inherits the parent’s unique least marked ancestor, which by
inductive hypothesis exists. The interesting case is (v) and (vi):

a b
\ /
b

If the child is marked, then again the statement is trivial; so
suppose it is not. By definition, this only occurs when *(a) is an
ancestor of ’b’. But, by assumption, ’b’ has a unique nearest
ancestor, whose value is ’b’. Therefore, *(a) is also an ancestor
of *(b). If we’re in the weird edge case (vi) where a = b, then
these may be the same ancestor, which is fine. Otherwise, the fact
that a != b, and that *(a)’s value = a’s value, *(b)’s value = b’s
value, implies that *(a) is a strict ancestor of *(b). Either way,
the child has a unique least marked ancestor, and it is the same
ULMA as its same-valued parent, so the ULMA also has the right
value. QED.

Corollary: *(N) is a well-defined function.

Corollary: The three cases mentioned in the merge algorithm are the
only possible cases. In particular, it cannot be that *(A) is an
ancestor of B and *(B) is an ancestor of A simultaneously, unless
the two values being merged are identical (and why are you running

186 monotone documentation

your merge algorithm then?). Or in other words: ambiguous clean
merge does not exist.

Proof: Suppose *(A) is an ancestor of B, and *(B) is an ancestor of A.
*(B) is unique, so *(A) must also be an ancestor of *(B).
Similarly, *(B) must be an ancestor of *(A). Therefore:
*(A) = *(B)

We also have:
value(*(A)) = value(A)
value(*(B)) = value(B)

which implies
value(A) = value(B). QED.

Therefore, the above algorithm is well-defined in all possible cases.

We can prove another somewhat interesting fact:
Theorem: If A and B would merge cleanly with A winning, then any
descendent D of A will also merge cleanly with B, with D winning.

Proof: *(B) is an ancestor of A, and A is an ancestor of D, so *(B) is
an ancestor of D.

I suspect that this is enough to show that clean merges are order
invariant, but I don’t have a proof together ATM.

Not sure what other properties would be interesting to prove; any
suggestions? It’d be nice to have some sort of proof about "once a
conflict is resolved, you don’t have to resolve it again" -- which is
the problem that makes ambiguous clean merge so bad -- but I’m not
sure how to state such a property formally. Something about it being
possible to fully converge a graph by resolving a finite number of
conflicts or something, perhaps?

Funky cases

There are two funky cases I know of.

Coincidental clean merge:
|
a
/ \
b* b*

Two people independently made the same change. When we’re talking
about textual changes, some people argue this should give a conflict
(reasoning that perhaps the same line _should_ be inserted twice). In
our context that argument doesn’t even apply, because these are just
scalars; so obviously this should be a clean merge. Currently, the

Chapter 7: Special Topics 187

only way this algorithm has to handle this is to treat it as an
"automatically resolved conflict" -- there’s a real conflict here, but
the VCS, acting as an agent for the user, may decide to just go ahead
and resolve it, because it knows perfectly well what the user will do.
In this interpretation, everything works fine, all the above stuff
applies; it’s somewhat dissatisfying, though, because it’s a violation
of the user model -- the user has not necessarily looked at this
merge, but we put the * of user-assertion on the result anyway. Not a
show-stopper, I guess...

It’s quite possible that the above stuff could be generalized to allow
non-unique least marked ancestors, that could only arise in exactly
this case.

I’m not actually sure what the right semantics would be, though. If
we’re merging:

|
a
/ \
b b
\ / \
b c

Should that be a clean merge? ’b’ was set twice, and only one of
these settings was overridden; is that good enough?

Do you still have the same opinion if the graph is:
|
a
|
b
/ \
c b
| / \
b b c
\ /
b

? Here the reason for the second setting of ’b’ was that a change
away from it was reverted; to make it extra cringe-inducing, I threw
in that change being reverted was another change to ’c’... (this may
just be an example of how any merge algorithm has some particular case
you can construct where it will get something wrong, because it
doesn’t _actually_ know how to read the users’s minds).

Supporting these cases may irresistably lead back to ambiguous clean,
as well:

|
a

188 monotone documentation

/ \
b* c*
/ \ / \
c* X b*
\ / \ /
c b

The other funky case is this thing (any clever name suggestions?):
a
/ \
b* c*
\ / \
c* d*

Merging here will give a conflict, with my algorithm; 3-way merge
would resolve it cleanly. Polling people on #monotone and #revctrl,
the consensus seems to be that they agree with 3-way merge, but giving
a conflict is really not _that_ bad. (It also seems to cause some
funky effects with darcs-merge; see zooko’s comments on #revctrl and
darcs-users.)

This is really a problem with the user model, rather than the
algorithm. Apparently people do not interpret the act of resolving
the b/c merge to be "setting" the result; They seem to interpret it as
"selecting" the result of ’c’; the ’c’ in the result is in some sense
the "same" ’c’ as in the parent. The difference between "setting" and
"selecting" is the universe of possible options; if you see

a b
\ /
c

then you figure that the person doing the merge was picking from all
possible resolution values; when you see

a b
\ /
b

you figure that the user was just picking between the two options
given by the parents. My user model is too simple to take this into
account. It’s not a huge extension to the model to do so; it’s quite
possible that an algorithm could be devised that gave a clean merge
here, perhaps by separately tracking each node’s nearest marked
ancestor and the original source of its value as two separate things.

Relation to other work

This algorithm is very close to the traditional codeville-merge
approach to this problem; the primary algorithmic difference is the
marking of conflict resolutions as being "changes". The more

Chapter 7: Special Topics 189

important new stuff here, I think, are the user model and the proofs.

Traditionally, merge algorithms are evaluated by coming up with some
set of examples, eyeballing them to make some guess as to what the
"correct" answer was, comparing that to the algorithm’s output, and
then arguing with people whose intuitions were different.
Fundamentally, merging is about deterministically guessing the user’s
intent in situations where the user has not expressed any intent.
Humans are very good at guessing intent; we have big chunks of squishy
hardware designed to form sophisticated models of others intents, and
it’s completely impossible for a VCS to try and duplicate that in
full. My suggestion here, with my "user model", is to seriously and
explicitly study this part of the problem. There are complicated
trade-offs between accuracy (correctly modeling intention),
conservatism (avoiding incorrectly modeling intention), and
implementability (describing the user’s thought processes exactly
isn’t so useful if you can’t apply it in practice). It’s hard to make
an informed judgement when we don’t have a name for the thing we’re
trying to optimize, and hard to evaluate an algorithm when we can’t
even say what it’s supposed to be doing.

I suspect the benefit of the proofs is obvious to anyone who has spent
much time banging their head against this problem; until a few days
ago I was skeptical there _was_ a way to design a merge algorithm that
didn’t run into problems like ambiguous clean merge.

I’m still skeptical, of course, until people read this; merging is
like crypto, you can’t trust anything until everyone’s tried to break
it... so let’s say I’m cautiously optimistic . If this holds up,
I’m quite happy; between the user model and the proofs, I’m far more
confident that this does something sensible in all cases and has no
lurking edge cases than I have been in any previous algorithm. The
few problem cases I know of display a pleasing conservatism -- perhaps
more cautious than they need to be, but even if they do cause an
occasional unnecessary conflict, once the conflict is resolved it
should stay resolved.

So... do your worst!

-- Nathaniel

--
So let us espouse a less contested notion of truth and falsehood, even
if it is philosophically debatable (if we listen to philosophers, we
must debate everything, and there would be no end to the discussion).
-- Serendipities, Umberto Eco

190 monotone documentation

Replies and further discussion concerning this email can be found in the monotone-devel
archives.

Improvements to *-merge

From: Nathaniel Smith <njs@...>
Subject: improvements to *-merge
Newsgroups: gmane.comp.version-control.revctrl, gmane.comp.version-control.monotone.devel
Date: 2005-08-30 09:21:18 GMT

This is a revised version of *-merge:
http://thread.gmane.org/gmane.comp.version-control.monotone.devel/4297

that properly handles accidental clean merges. It does not improve
any of the other parts, just the handling of accidental clean merges.
It shows a way to relax the uniqueness of the *() operator, while
still preserving the basic results from the above email. For clarity,
I’ll say ’unique-*-merge’ to refer to the algorithm given above, and
’multi-*-merge’ to refer to this one.

This work is totally due to Timothy Brownawell <tbrownaw@...>.
All I did was polish up the proofs and write it up. He has a more
complex version at:
http://article.gmane.org/gmane.comp.version-control.monotone.devel/4496

that also attempts to avoid the conflict with:
a
/ \
b* c*
\ / \
c* d*

and has some convergence in it, but the analysis for that is not done.

So:

User model

We keep exactly the same user model as unique-*-merge:

1) whenever a user explicitly sets the value, they express a claim
that their setting is superior to the old setting

2) whenever a user chooses to commit a new revision, they implicitly
affirm the validity of the decisions that led to that revision’s
parents
Corollary of (1) and (2): whenever a user explicitly sets the
value, they express that they consider their new setting to be
superior to _all_ old settings

3) A "conflict" should occur if, and only if, the settings on each

http://thread.gmane.org/gmane.comp.version-control.monotone.devel/4297
http://thread.gmane.org/gmane.comp.version-control.monotone.devel/4297

Chapter 7: Special Topics 191

side of the merge express parallel claims.

The difference is that unique-*-merge does not _quite_ fulfill this
model, because in real life your algorithm will automatically resolve
coincidental clean merge cases without asking for user input; but
unique-* is not smart enough to take this into account when inferring
user intentions.

Algorithm

We start by marking the graph of previous revisions. For each node in
the graph, we either mark it (denoted by a *), or do not. A mark
indicates our inference that a human expressed an intention at this
node.

i) a* graph roots are always marked

a1
ii) | no mark, value was not set

a2

a
iii) | b != a, so ’b’ node marked

b*

a b
iv) \ /

c*
’c’ is totally new, so marked

a1 a2
\ /
c*

a b1 we’re marking places where users expressed
v) \ / intention; so ’b’ should be marked iff this

b2? was a conflict

a1 a2 ’a’ matches parents, and so is not marked
vi) \ / (alternatively, we can say this is a special

a3 case of (v), that is never a conflict)

Case (vi) is the only one that differs from unique-* merge. However,
because of it, we must use a new definition of *():

Definition: By *(A), we mean we set of minimal marked ancestors of A.
"Minimal" here is used in the mathematical sense of a node in a graph

192 monotone documentation

that has no descendents in that graph.

Algorithm: Given two nodes to merge, A and B, we consider four cases:
a) value(A) = value(B): return the shared value
b) *(A) > B: return value(B)
c) *(B) > A: return value(A)
d) else: conflict; escalate to user

Where "*(A) > B" means "all elements of the set *(A) are non-strict
ancestors of the revision B". The right way to read this is as "try
(a) first, and then if that fails try (b), (c), (d) simultaneously".

Note that except for the addition of rule (a), this is a strict
generalization of the unique-* algorithm; if *(A) and *(B) are
single-element sets, then this performs _exactly_ the same
computations as the unique-* algorithm.

Now we can say what we mean by "was a conflict" in case (v) above:
given a -> b2, b1 -> b2, we leave b2 unmarked if and only if
*(a) > b1.

Examples

1.
a1*
/ \
a2 b*

result: *(a2) = {a1}, a1 > b, so b wins.

2.
a*
/ \
b* c*

result: *(b) = {b}, *(c) = {c}, neither *(b) > c nor *(c) > b, so
conflict.

3.
a*
/ \
b1* b2*
\ / \
b3 c1*

result: *(b3) = {b1, b2}; b2 > c1, but b1 is not > c, so c does not
win. *(c1) = {c1}, which is not > b3. conflict.

Chapter 7: Special Topics 193

note: this demonstrates that this algorithm does _not_ do convergence.
Instead, it takes the conservative position that for one node to
silently beat another, the winning node must pre-empt _all_ the
intentions that created the losing node. While it’s easy to come up
with just-so stories where this is the correct thing to do (e.g., b1
and b2 each contain some other changes that independently require ’a’
to become ’b’; c1 will have fixed up b2’s changes, but not b1’s), this
doesn’t actually mean much. Whether this is good or bad behavior a
somewhat unresolved question, that may ultimately be answered by which
merge algorithms turn out to be more tractable...

4.
a*
/ \
b1* b2*
|\ /|
| X |
|/ \|
b3 c*

result: *(b3) = {b1, b2} > c. *(c) = {c}, which is not > b3. c wins
cleanly.

5.
a*

/ \
b1* c1*
/ \ / \
c2* X b2*
\ / \ /
c3 b3

result: *(c3) = {c1, c2}; c1 > b3 but c2 is not > b3, so b3 does not
win. likewise, *(b3) = {b1, b2}; b1 > c3 but b2 is not > c3, so c3
does not win either. conflict.

6.
a*
/ \
b1* c1*
/ \ / \
c2* X b2*
\ / \ /
c3 b3
|\ /|
| X |
|/ \|

194 monotone documentation

c4* b4*

(this was my best effort to trigger an ambiguous clean merge with this
algorithm; it fails pitifully:)
result: *(c4) = {c4}, *(b4) = {b4}, obvious conflict.

Math

The interesting thing about this algorithm is that all the unique-*
proofs still go through, in a generalized form. The key one that
makes *-merge tractable is:

Theorem: In a graph marked by the above rules, given a node N, all
nodes in *(N) will have the same value as N.
Proof: By induction. We consider the cases (i)-(vi) above. (i)
through (iv) are trivially true. (v) is interesting. b2 is marked
when *(a) not > b1. b2 being marked makes that case trivial, so
suppose *(a) > b1. All elements of *(a) are marked, and are
ancestors of b1; therefore, by the definition of *() and "minimal",
they are also all ancestors of things in *(b1). Thus no element of
*(a) can be a minimal marked ancestor of b2.
(vi) is also trivial, because *(a3) = *(a1) union *(a2). QED.

We also have to do a bit of extra work because of the sets:

Corollary 1: If *(A) > B, and any element R of *(B) is R > A, then
value(A) = value(B).
Proof: Let such an R be given. R > A, and R marked, imply that there
is some element S of *(A) such that R > S.
On the other hand, *(A) > B implies that S > B. By similar reasoning
to the above, this means that there is some element T of *(B) such
that S > T. So, recapping, we have:
nodes: R > S > T
from: *(B) *(A) *(B)

*(B) is a set of minimal nodes, yet we have R > T and R and T both in
*(B). This implies that R = T. R > S > R implies that S = R,
because we are in a DAG. Thus
value(A) = value(S) = value(R) = value(B)

QED.

Corollary 2: If *(A) > B and *(B) > A, then not only does value(A) =
value(B), but *(A) = *(B).
Proof: By above, each element of *(B) is equal to some element of
*(A), and vice-versa.

This is good, because it means our algorithm is well-defined. The

Chapter 7: Special Topics 195

only time when options (b) and (c) (in the algorithm) can
simultaneously be true, is when the two values being merged are
identical to start with. I.e., no somewhat anomalous "4th case" of
ambiguous clean merge.

Actually, this deserves some more discussion. With *() returning a
set, there are some more subtle "partial ambiguous clean" cases to
think about -- should we be worrying about cases where some, but not
all, of the marked ancestors are pre-empted? This is possible, as in
example 5 above:

a*
/ \
b1* c1*
/ \ / \
c2* X b2*
\ / \ /
c3 b3

A hypothetical (convergence supporting?) algorithm that said A beats B
if _any_ elements of *(A) are > B would give an ambiguous clean merge
on this case. (Maybe that wouldn’t be so bad, so long as we marked
the result, but I’m in no way prepared to do any sort of sufficient
analysis right now...)

The nastiest case of this is where *(A) > B, but some elements of *(B)
are > A -- so we silently make B win, but it’s really not _quite_
clear that’s a good idea, since A also beat B sometimes -- and we’re
ignoring those user’s intentions.

This is the nice thing about Corollary 1 (and why I didn’t just
collapse it into Corollary 2) -- it assures us that the only time this
weak form of ambiguous clean can happen is when A and B are already
identical. This _can_ happen, for what it’s worth:

a*
/|\
/ | \
/ | \
/ | \
b1* b2* d*
|\ /\ /
| \ / \/
| X b3*
| / \ /
|/ b4
b5

Here *(b5) = {b3, b2}, *(b6) = {b2, b4}. If we ignore for a moment
that b4 and b5 have the same value, this is a merge that b4 would win
and b5 would lose, even though one of b4’s ancestors, i.e. b1, is

196 monotone documentation

pre-empted by b5. However, it can _only_ happen if we ignore that
they have the same value...

The one other thing we proved about unique-* merge also still applies;
the proof goes through word-for-word:
Theorem: If A and B would merge cleanly with A winning, then any
descendent D of A will also merge cleanly with B, with D winning.

Proof: *(B) > A, and A > D, so *(B) > D.

Discussion

This algorithm resolves one of the two basic problems I observed for
unique-* merge -- coincidental clean merges are now handled, well,
cleanly, and the user model is fully implemented. However, we still
do not handle the unnamed case (you guys totally let me down when I
requested names for this case last time):

a
/ \
b* c*
\ / \
c* d*

which still gives a conflict. We also, of course, continue to not
support more exotic features like convergence or implicit rollback.

Not the most exciting thing in the world. OTOH, it does strictly
increase the complexity of algorithms that are tractable to formal
analysis.

Comments and feedback appreciated.

-- Nathaniel

--
"The problem...is that sets have a very limited range of
activities -- they can’t carry pianos, for example, nor drink
beer."

Replies and further discussion concerning this email can be found in the monotone-devel
archives.

More on "mark-merge"

From: Timothy Brownawell <tbrownaw@...>
Subject: more on "mark-merge"
Newsgroups: gmane.comp.version-control.revctrl, gmane.comp.version-control.monotone.devel

Prerequisite:

http://thread.gmane.org/gmane.comp.version-control.revctrl/93
http://thread.gmane.org/gmane.comp.version-control.revctrl/93

Chapter 7: Special Topics 197

http://thread.gmane.org/gmane.comp.version-control.monotone.devel/4297

A user can make 2 types of merge decisions:
(1): One parent is better than the other (represented by *)
(2): Both parents are wrong (represented by ^)

Since there are 2 types of merge decisions, it would be bad to treat all
merge decisions the same. Also, in the case of merge(a, a) = a, it is
possible for there to be multiple least decision ancestors.

=====

Define: ^(A) is the set of ancestors of A that it gets its value from
(found by setting N=A and iterating N = *(N) until there is no change)

*(A) is the set of least ancestors of A in which the user made a
decision

note that erase_ancestors(^(A)) = ^(A),
and erase_ancestors(*(A)) = *(A)

=====

& is intersection, | is union

*(A) has the same properties as before, except that it is not a single
ancestor, but a set. This set can acquire more than one member only in
the case of

Aa Ba
\ /
Ca

, where *(A) and *(B) are different; *(C) will be
erase_ancestors(*(A) | *(B))

The ancestory corollary becomes:
any ancestor C of A with value(C) != value(A) will be an ancestor of at
least one member of *(A)

When merging A and B:

if one side knows of _all_ places that the other side was chosen, it
wins
(1)
set X = erase_ancestors(*(A) | *(B))

if X & *(B) = {}, A wins
if X & *(A) = {}, B wins

else, X contains members of both *(A) and *(B)

198 monotone documentation

if one side knows of _all_ places that the other side originated, it
wins
(2)
set Y = erase_ancestors(*(A) | ^(B))
set Z = erase_ancestors(*(B) | ^(A))

if Y & ^(B) = {} and Z & ^(A) = {}, conflict
if Y & ^(B) = {}, A wins
if Z & ^(A) = {}, B wins

if one side knows of _any_ places that the other side originated, it
wins
(3)

if Y & ^(B) != ^(B) and Z & ^(A) != ^(A), conflict
if Y & ^(B) != ^(B), A wins
if Z & ^(A) != ^(A), B wins

else, nobody knows anything
(4) conflict

(3) is convergence, and can be safely left out if unwanted

====

"Funky cases"

Coincidental clean does not exist; a mark is only needed when there is
user intervention.

|
a
/ \
b b
\ / \
b c

and the example after it will resolve cleanly iff (3) is included.

|
a
/ \
b* c*
/ \ / \
c* X b*
\ / \ /
c b

will be a conflict.

a

Chapter 7: Special Topics 199

/ \
b* c*
\ / \
c* d*

This ("the other funky case") is handled by (2), and resolves cleanly.

Tim

Replies and further discussion concerning this email can be found in the monotone-devel
archives.

7.5 Regular Expression Syntax

Monotone expects user-provided regular expressions in ‘.mtn-ignore’ files and as the result
of the get_encloser_pattern Lua hook (for the diff command). User-written Lua hooks
may also use the function regex.search as they see fit. All these regular expressions should
be written with the same syntax, which is that expected by the Perl-Compatible Regular
Expression library (PCRE).

7.5.1 Regexp Syntax Summary

This is a quick-reference summary of the regular expression syntax used in Monotone.

Quoting

\x where x is non-alphanumeric is a literal x

\Q...\E treat enclosed characters as literal

Characters

\a alarm, that is, the BEL character (hex 07)

\cx “control-x”, where x is any character

\e escape (hex 1B)

\f formfeed (hex 0C)

\n newline (hex 0A)

\r carriage return (hex 0D)

\t tab (hex 09)

\ddd character with octal code ddd, or backreference

\xhh character with hex code hh

\x{hhh...}
character with hex code hhh...

Character Types

. any character except newline; in dotall mode, any character whatsoever

\C one byte, even in UTF-8 mode (best avoided)

http://thread.gmane.org/gmane.comp.version-control.revctrl/92
http://thread.gmane.org/gmane.comp.version-control.revctrl/92

200 monotone documentation

\d a decimal digit

\D a character that is not a decimal digit

\h a horizontal whitespace character

\H a character that is not a horizontal whitespace character

\p{xx} a character with the xx property

\P{xx} a character without the xx property

\R a newline sequence

\s a whitespace character

\S a character that is not a whitespace character

\v a vertical whitespace character

\V a character that is not a vertical whitespace character

\w a “word” character

\W a “non-word” character

\X an extended Unicode sequence

‘\d’, ‘\D’, ‘\s’, ‘\S’, ‘\w’, and ‘\W’ recognize only ASCII characters.

General category property codes for ‘\p’ and ‘\P’

C Other

Cc Control

Cf Format

Cn Unassigned

Co Private use

Cs Surrogate

L Letter

Ll Lower case letter

Lm Modifier letter

Lo Other letter

Lt Title case letter

Lu Upper case letter

L& Ll, Lu, or Lt

M Mark

Mc Spacing mark

Me Enclosing mark

Chapter 7: Special Topics 201

Mn Non-spacing mark

N Number

Nd Decimal number

Nl Letter number

No Other number

P Punctuation

Pc Connector punctuation

Pd Dash punctuation

Pe Close punctuation

Pf Final punctuation

Pi Initial punctuation

Po Other punctuation

Ps Open punctuation

S Symbol

Sc Currency symbol

Sk Modifier symbol

Sm Mathematical symbol

So Other symbol

Z Separator

Zl Line separator

Zp Paragraph separator

Zs Space separator

Script names for ‘\p’ and ‘\P’

Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese, Buhid, Cana-
dian Aboriginal, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret,
Devanagari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han,
Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana, Kharoshthi, Khmer,
Lao, Latin, Limbu, Linear B, Malayalam, Mongolian, Myanmar, New Tai Lue, Nko,
Ogham, Old Italic, Old Persian, Oriya, Osmanya, Phags Pa, Phoenician, Runic, Shavian,
Sinhala, Syloti Nagri, Syriac, Tagalog, Tagbanwa, Tai Le, Tamil, Telugu, Thaana, Thai,
Tibetan, Tifinagh, Ugaritic, Yi.

202 monotone documentation

Character Classes

[...] positive character class

[^...] negative character class

[x-y] range (can be used for hex characters)

[[:xxx:]]
positive POSIX named set

[[:^xxx:]]
negative POSIX named set

alnum alphanumeric

alpha alphabetic

ascii 0-127

blank space or tab

cntrl control character

digit decimal digit

graph printing, excluding space

lower lower case letter

print printing, including space

punct printing, excluding alphanumeric

space whitespace

upper upper case letter

word same as ‘\w’

xdigit hexadecimal digit

In PCRE, POSIX character set names recognize only ASCII characters. You can use
‘\Q...\E’ inside a character class.

Quantifiers

? 0 or 1, greedy

?+ 0 or 1, possessive

?? 0 or 1, lazy

* 0 or more, greedy

*+ 0 or more, possessive

*? 0 or more, lazy

+ 1 or more, greedy

++ 1 or more, possessive

Chapter 7: Special Topics 203

+? 1 or more, lazy

{n} exactly n

{n,m} at least n, no more than m, greedy

{n,m}+ at least n, no more than m, possessive

{n,m}? at least n, no more than m, lazy

{n,} n or more, greedy

{n,}+ n or more, possessive

{n,}? n or more, lazy

Anchors and Simple Assertions

\b word boundary

\B not a word boundary

^ start of subject also after internal newline in multiline mode

\A start of subject

$ end of subject also before newline at end of subject also before internal newline
in multiline mode

\Z end of subject also before newline at end of subject

\z end of subject

\G first matching position in subject

Match Point Reset

\K reset start of match

Alternation

expr|expr|expr...

Capturing

(...) capturing group

(?<name>...)
named capturing group (like Perl)

(?’name’...)
named capturing group (like Perl)

(?P<name>...)
named capturing group (like Python)

(?:...) non-capturing group

(?|...) non-capturing group; reset group numbers for capturing groups in each alter-
native

204 monotone documentation

Atomic Groups

(?>...) atomic, non-capturing group

Comment

(?#....) comment (not nestable)

Option Setting

(?i) caseless

(?J) allow duplicate names

(?m) multiline

(?s) single line (dotall)

(?U) default ungreedy (lazy)

(?x) extended (ignore white space)

(?-...) unset option(s)

Lookahead and Lookbehind Assertions

(?=...) positive look ahead

(?!...) negative look ahead

(?<=...) positive look behind

(?<!...) negative look behind

Each top-level branch of a look behind must be of a fixed length.

Backreferences

\n reference by number (can be ambiguous)

\gn reference by number

\g{n} reference by number

\g{-n} relative reference by number

\k<name> reference by name (like Perl)

\k’name’ reference by name (like Perl)

\g{name} reference by name (like Perl)

\k{name} reference by name (like .NET)

(?P=name)
reference by name (like Python)

Chapter 7: Special Topics 205

Subroutine References (possibly recursive)

(?R) recurse whole pattern

(?n) call subpattern by absolute number

(?+n) call subpattern by relative number

(?-n) call subpattern by relative number

(?&name) call subpattern by name (like Perl)

(?P>name)
call subpattern by name (like Python)

Conditional Patterns

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)
(?(n)... absolute reference condition

(?(+n)...
relative reference condition

(?(-n)...
relative reference condition

(?(<name>)...
named reference condition (like Perl)

(?(’name’)...
named reference condition (like Perl)

(?(name)...
named reference condition (PCRE only)

(?(R)... overall recursion condition

(?(Rn)...
specific group recursion condition

(?(R&name)...
specific recursion condition

(?(DEFINE)...
define subpattern for reference

(?(assert)...
assertion condition

Backtracking Control

The following act immediately they are reached:

(*ACCEPT)
force successful match

(*FAIL) force backtrack; synonym ‘(*F)’

206 monotone documentation

The following act only when a subsequent match failure causes a backtrack to reach
them. They all force a match failure, but they differ in what happens afterwards. Those
that advance the start-of-match point do so only if the pattern is not anchored.

(*COMMIT)
overall failure, no advance of starting point

(*PRUNE) advance to next starting character

(*SKIP) advance start to current matching position

(*THEN) local failure, backtrack to next alternation

Newline Conventions

These are recognized only at the very start of the pattern or after a ‘(*BSR_...)’ option.

(*CR)

(*LF)

(*CRLF)

(*ANYCRLF)
(*ANY)

What ‘\R’ Matches

These are recognized only at the very start of the pattern or after a ‘(*...)’ option that
sets the newline convention.

(*BSR_ANYCRLF)
(*BSR_UNICODE)

7.5.2 Regexp Details

The syntax and semantics of PCRE regular expressions, as used in Monotone, are described
in detail below. Regular expressions in general are covered in a number of books, some of
which have copious examples. Jeffrey Friedl’s “Mastering Regular Expressions,” published
by O’Reilly, covers regular expressions in great detail. This description is intended as
reference material.

Characters and Metacharacters

A regular expression is a pattern that is matched against a subject string from left to right.
Most characters stand for themselves in a pattern, and match the corresponding characters
in the subject. As a trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. When caseless matching is
specified, letters are matched independently of case.

The power of regular expressions comes from the ability to include alternatives and
repetitions in the pattern. These are encoded in the pattern by the use of metacharacters,
which do not stand for themselves but instead are interpreted in some special way.

There are two different sets of metacharacters: those that are recognized anywhere in
the pattern except within square brackets, and those that are recognized within square
brackets. Outside square brackets, the metacharacters are as follows:

Chapter 7: Special Topics 207

\ general escape character with several uses
^ assert start of string (or line, in multiline mode)
$ assert end of string (or line, in multiline mode)
. match any character except newline (by default)
[start character class definition
| start of alternative branch
(start subpattern
) end subpattern
? extends the meaning of ‘(’ also 0 or 1 quantifier also quantifier minimizer
* 0 or more quantifier
+ 1 or more quantifier also “possessive quantifier”
{ start min/max quantifier

Part of a pattern that is in square brackets is called a "character class". In a character
class the only metacharacters are:

\ general escape character
^ negate the class, but only if the first character
- indicates character range
[POSIX character class (only if followed by POSIX syntax)
] terminates the character class

The following sections describe the use of each of the metacharacters.

Backslash

The backslash character has several uses. Firstly, if it is followed by a non-alphanumeric
character, it takes away any special meaning that character may have. This use of backslash
as an escape character applies both inside and outside character classes.

For example, if you want to match a ‘*’ character, you write ‘*’ in the pattern. This es-
caping action applies whether or not the following character would otherwise be interpreted
as a metacharacter, so it is always safe to precede a non-alphanumeric with backslash to
specify that it stands for itself. In particular, if you want to match a backslash, you write
‘\\’.

If a pattern is compiled with the ‘(?x)’ option, whitespace in the pattern (other than in a
character class) and characters between a ‘#’ outside a character class and the next newline
are ignored. An escaping backslash can be used to include a whitespace or ‘#’ character as
part of the pattern.

If you want to remove the special meaning from a sequence of characters, you can do so
by putting them between ‘\Q’ and ‘\E’. The ‘\Q...\E’ sequence is recognized both inside
and outside character classes.

Non-printing Characters

A second use of backslash provides a way of encoding non-printing characters in patterns
in a visible manner. There is no restriction on the appearance of non-printing characters,
apart from the binary zero that terminates a pattern, but when a pattern is being prepared
by text editing, it is usually easier to use one of the following escape sequences than the
binary character it represents:

208 monotone documentation

\a alarm, that is, the BEL character (hex 07)
\cx "control-x", where x is any character
\e escape (hex 1B)
\f formfeed (hex 0C)
\n linefeed (hex 0A)
\r carriage return (hex 0D)
\t tab (hex 09)
\ddd character with octal code ddd, or backreference
\xhh character with hex code hh
\x{hhh...}

character with hex code hhh...

The precise effect of ‘\cx ’ is as follows: if x is a lower case letter, it is converted to upper
case. Then bit 6 of the character (hex 40) is inverted. Thus ‘\cz’ becomes hex 1A (the
〈SUB〉 control character, in ASCII), but ‘\c{’ becomes hex 3B (‘;’), and ‘\c;’ becomes hex
7B (‘{’).

After ‘\x’, from zero to two hexadecimal digits are read (letters can be in upper or lower
case). Any number of hexadecimal digits may appear between ‘\x{’ and ‘}’, but the value
of the character code must be less than 256 in non-UTF-8 mode, and less than 231 in UTF-8
mode. That is, the maximum value in hexadecimal is 7FFFFFFF. Note that this is bigger
than the largest Unicode code point, which is 10FFFF.

If characters other than hexadecimal digits appear between ‘\x{’ and ‘}’, or if there is
no terminating ‘}’, this form of escape is not recognized. Instead, the initial ‘\x’ will be
interpreted as a basic hexadecimal escape, with no following digits, giving a character whose
value is zero.

Characters whose value is less than 256 can be defined by either of the two syntaxes for
‘\x’. There is no difference in the way they are handled. For example, ‘\xdc’ is exactly the
same as ‘\x{dc}’.

After ‘\0’ up to two further octal digits are read. If there are fewer than two digits, just
those that are present are used. Thus the sequence ‘\0\x\07’ specifies two binary zeros
followed by a 〈BEL〉 character (octal 007). Make sure you supply two digits after the initial
zero if the pattern character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is complicated. Outside a
character class, PCRE reads it and any following digits as a decimal number. If the number
is less than 10, or if there have been at least that many previous capturing left parentheses
in the expression, the entire sequence is taken as a back reference. A description of how
this works is given later, following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not
been that many capturing subpatterns, PCRE re-reads up to three octal digits following
the backslash, and uses them to generate a data character. Any subsequent digits stand
for themselves. In non-UTF-8 mode, the value of a character specified in octal must be less
than ‘\400’. In UTF-8 mode, values up to ‘\777’ are permitted. For example:

Chapter 7: Special Topics 209

\040 is another way of writing a space
\40 is the same, provided there are fewer than 40 previous capturing subpatterns
\7 is always a back reference
\11 might be a back reference, or another way of writing a tab
\011 is always a tab
\0113 is a tab followed by the character ‘3’
\113 might be a back reference, otherwise the character with octal code 113
\377 might be a back reference, otherwise the byte consisting entirely of 1 bits
\81 is either a back reference, or a binary zero followed by the two characters ‘8’

and ‘1’

Note that octal values of 100 or greater must not be introduced by a leading zero, because
no more than three octal digits are ever read.

All the sequences that define a single character value can be used both inside and outside
character classes. In addition, inside a character class, the sequence ‘\b’ is interpreted as
the 〈BS〉 character (hex 08), and the sequences ‘\R’ and ‘\X’ are interpreted as the characters
‘R’ and ‘X’, respectively. Outside a character class, these sequences have different meanings
(see below).

Absolute and Relative Back References

The sequence ‘\g’ followed by an unsigned or a negative number, optionally enclosed in
braces, is an absolute or relative back reference. A named back reference can be coded as
‘\g{name}’. Back references are discussed later, following the discussion of parenthesized
subpatterns.

Generic character types

Another use of backslash is for specifying generic character types. The following are always
recognized:

\d any decimal digit
\D any character that is not a decimal digit
\h any horizontal whitespace character
\H any character that is not a horizontal whitespace character
\s any whitespace character
\S any character that is not a whitespace character
\v any vertical whitespace character
\V any character that is not a vertical whitespace character
\w any “word” character
\W any “non-word” character

Each pair of escape sequences partitions the complete set of characters into two disjoint
sets. Any given character matches one, and only one, of each pair.

These character type sequences can appear both inside and outside character classes.
They each match one character of the appropriate type. If the current matching point is at
the end of the subject string, all of them fail, since there is no character to match.

For compatibility with Perl, ‘\s’ does not match the 〈VT〉 character (code 11). This
makes it different from the the POSIX “space” class. The ‘\s’ characters are 〈TAB〉 (9), 〈LF〉
(10), 〈FF〉 (12), 〈CR〉 (13), and 〈SPACE〉 (32).

210 monotone documentation

In UTF-8 mode, characters with values greater than 128 never match ‘\d’, ‘\s’, or ‘\w’,
and always match ‘\D’, ‘\S’, and ‘\W’. These sequences retain their original meanings from
before UTF-8 support was available, mainly for efficiency reasons.

The sequences ‘\h’, ‘\H’, ‘\v’, and ‘\V’ are Perl 5.10 features. In contrast to the other
sequences, these do match certain high-valued codepoints in UTF-8 mode. The horizontal
space characters are:

U+0009 Horizontal tab
U+0020 Space
U+00A0 Non-break space
U+1680 Ogham space mark
U+180E Mongolian vowel separator

U+2000 En quad
U+2001 Em quad
U+2002 En space
U+2003 Em space
U+2004 Three-per-em space
U+2005 Four-per-em space
U+2006 Six-per-em space

U+2007 Figure space
U+2008 Punctuation space
U+2009 Thin space
U+200A Hair space
U+202F Narrow no-break space
U+205F Medium mathematical space
U+3000 Ideographic space

The vertical space characters are:

U+000A Linefeed
U+000B Vertical tab
U+000C Formfeed
U+000D Carriage return
U+0085 Next line
U+2028 Line separator
U+2029 Paragraph separator

A “word” character is an underscore or any character less than 256 that is a letter or digit.
The definition of letters and digits is that used for the “C” locale.

Newline Conventions

PCRE supports five different conventions for indicating line breaks in strings: a single
CR (carriage return) character, a single LF (linefeed) character, the two-character sequence
CRLF, any of the three preceding, or any Unicode newline sequence. The default is to match
any Unicode newline sequence. It is possible to override the default newline convention by
starting a pattern string with one of the following five sequences:

Chapter 7: Special Topics 211

(*CR) carriage return
(*LF) linefeed
(*CRLF) carriage return, followed by linefeed
(*ANYCRLF)

any of the three above

(*ANY) all Unicode newline sequences

For example, the pattern

(*CR)a.b

changes the convention to CR. That pattern matches ‘a\nb’ because LF is no longer a
newline. Note that these special settings, which are not Perl-compatible, are recognized
only at the very start of a pattern, and that they must be in upper case. If more than one
of them is present, the last one is used.

The newline convention does not affect what the ‘\R’ escape sequence matches. By
default, this is any Unicode newline sequence, for Perl compatibility. However, this can be
changed; see the description of ‘\R’ below. A change of ‘\R’ setting can be combined with
a change of newline convention.

Newline Sequences

Outside a character class, by default, the escape sequence ‘\R’ matches any Unicode newline
sequence. This is a Perl 5.10 feature. In non-UTF-8 mode ‘\R’ is equivalent to the following:

(?>\r\n|\n|\x0b|\f|\r|\x85)

This is an example of an "atomic group", details of which are given below. This par-
ticular group matches either the two-character sequence 〈CR〉 followed by 〈LF〉, or one of
the single characters 〈LF〉 (linefeed, U+000A), 〈VT〉 (vertical tab, U+000B), 〈FF〉 (formfeed,
U+000C), 〈CR〉 (carriage return, U+000D), or 〈NEL〉 (next line, U+0085). The two-character
sequence is treated as a single unit that cannot be split. In UTF-8 mode, two additional
characters whose codepoints are greater than 255 are added: 〈LS〉 (line separator, U+2028)
and 〈PS〉 (paragraph separator, U+2029).

It is possible to change the meaning of ‘\R’ by starting a pattern string with one of the
following sequences:

(*BSR_ANYCRLF)
〈CR〉, 〈LF〉, or 〈CR〉〈LF〉 only

(*BSR_UNICODE)
any Unicode newline sequence (the default)

Note that these special settings, which are not Perl-compatible, are recognized only at
the very start of a pattern, and that they must be in upper case. If more than one of them
is present, the last one is used. They can be combined with a change of newline convention,
for example, a pattern can start with:

(*ANY)(*BSR_ANYCRLF)

Inside a character class, ‘\R’ matches the letter ‘R’.

212 monotone documentation

Unicode Character Properties

Three additional escape sequences match characters with specific Unicode properties. When
not in UTF-8 mode, these sequences are of course limited to testing characters whose
codepoints are less than 256, but they do work in this mode. The extra escape sequences
are:

\p{xx} a character with the xx property
\P{xx} a character without the xx property
\X an extended Unicode sequence

The property names represented by xx above are limited to the Unicode script names,
the general category properties, and ‘Any’, which matches any character (including newline).
Other properties such as ‘InMusicalSymbols’ are not currently supported by PCRE. Note
that ‘\P{Any}’ does not match any characters, so always causes a match failure.

Sets of Unicode characters are defined as belonging to certain scripts. A character from
one of these sets can be matched using a script name. For example:

\p{Greek}
\P{Han}

Those that are not part of an identified script are lumped together as “Common.” The
current list of scripts is:

Arabic, Armenian, Balinese, Bengali, Bopomofo, Braille, Buginese, Buhid, Cana-
dian Aboriginal, Cherokee, Common, Coptic, Cuneiform, Cypriot, Cyrillic, Deseret,
Devanagari, Ethiopic, Georgian, Glagolitic, Gothic, Greek, Gujarati, Gurmukhi, Han,
Hangul, Hanunoo, Hebrew, Hiragana, Inherited, Kannada, Katakana, Kharoshthi, Khmer,
Lao, Latin, Limbu, Linear B, Malayalam, Mongolian, Myanmar, New Tai Lue, Nko,
Ogham, Old Italic, Old Persian, Oriya, Osmanya, Phags Pa, Phoenician, Runic, Shavian,
Sinhala, Syloti Nagri, Syriac, Tagalog, Tagbanwa, Tai Le, Tamil, Telugu, Thaana, Thai,
Tibetan, Tifinagh, Ugaritic, Yi.

Each character has exactly one general category property, specified by a two-letter ab-
breviation. For compatibility with Perl, negation can be specified by including a circumflex
between the opening brace and the property name. For example, ‘\p{^Lu}’ is the same as
‘\P{Lu}’.

If only one letter is specified with ‘\p’ or ‘\P’, it includes all the general category prop-
erties that start with that letter. In this case, in the absence of negation, the curly brackets
in the escape sequence are optional; these two examples have the same effect:

\p{L}
\pL

The following general category property codes are supported:

C Other
Cc Control
Cf Format
Cn Unassigned
Co Private use
Cs Surrogate

Chapter 7: Special Topics 213

L Letter
Ll Lower case letter
Lm Modifier letter
Lo Other letter
Lt Title case letter
Lu Upper case letter

M Mark
Mc Spacing mark
Me Enclosing mark
Mn Non-spacing mark

N Number
Nd Decimal number
Nl Letter number
No Other number

P Punctuation
Pc Connector punctuation
Pd Dash punctuation
Pe Close punctuation
Pf Final punctuation
Pi Initial punctuation
Po Other punctuation
Ps Open punctuation

S Symbol
Sc Currency symbol
Sk Modifier symbol
Sm Mathematical symbol
So Other symbol

Z Separator
Zl Line separator
Zp Paragraph separator
Zs Space separator

The special property ‘L&’ is also supported: it matches a character that has the ‘Lu’,
‘Ll’, or ‘Lt’ property, in other words, a letter that is not classified as a modifier or “other.”

The ‘Cs’ (Surrogate) property applies only to characters in the range U+D800 to U+DFFF.
Such characters are not valid in UTF-8 strings (see RFC 3629) and so cannot be tested by
PCRE.

The long synonyms for these properties that Perl supports (such as ‘\p{Letter}’) are
not supported by PCRE, nor is it permitted to prefix any of these properties with ‘Is’.

No character that is in the Unicode table has the ‘Cn’ (unassigned) property. Instead,
this property is assumed for any code point that is not in the Unicode table.

Specifying caseless matching does not affect these escape sequences. For example,
‘\p{Lu}’ always matches only upper case letters.

The ‘\X’ escape matches any number of Unicode characters that form an extended Uni-
code sequence. ‘\X’ is equivalent to

214 monotone documentation

(?>\PM\pM*)

That is, it matches a character without the “mark” property, followed by zero or more
characters with the “mark” property, and treats the sequence as an atomic group (see
below). Characters with the “mark” property are typically accents that affect the preceding
character. None of them have codepoints less than 256, so in non-UTF-8 mode ‘\X’ matches
any one character.

Matching characters by Unicode property is not fast, because PCRE has to search a
structure that contains data for over fifteen thousand characters. That is why the traditional
escape sequences such as ‘\d’ and ‘\w’ do not use Unicode properties in PCRE.

Resetting the Match Start

The escape sequence ‘\K’, which is a Perl 5.10 feature, causes any previously matched
characters not to be included in the final matched sequence. For example, the pattern:

foo\Kbar

matches ‘foobar’, but reports that it has matched ‘bar’. This feature is similar to a
lookbehind assertion (described below). However, in this case, the part of the subject
before the real match does not have to be of fixed length, as lookbehind assertions do. The
use of ‘\K’ does not interfere with the setting of captured substrings. For example, when
the pattern

(foo)\Kbar

matches ‘foobar’, the first substring is still set to ‘foo’.

Simple assertions

The final use of backslash is for certain simple assertions. An assertion specifies a condition
that has to be met at a particular point in a match, without consuming any characters from
the subject string. The use of subpatterns for more complicated assertions is described
below. The backslashed assertions are:

\b matches at a word boundary
\B matches when not at a word boundary
\A matches at the start of the subject
\Z matches at the end of the subject also matches before a newline at the end of

the subject
\z matches only at the end of the subject
\G matches at the first matching position in the subject

These assertions may not appear in character classes (but note that ‘\b’ has a different
meaning, namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character and
the previous character do not both match ‘\w’ or ‘\W’ (i.e. one matches ‘\w’ and the other
matches ‘\W’), or the start or end of the string if the first or last character matches ‘\w’,
respectively.

The ‘\A’, ‘\Z’, and ‘\z’ assertions differ from the traditional circumflex and dollar (de-
scribed in the next section) in that they only ever match at the very start and end of the
subject string, whatever options are set. Thus, they are independent of multiline mode.

Chapter 7: Special Topics 215

The difference between ‘\Z’ and ‘\z’ is that ‘\Z’ matches before a newline at the end of the
string as well as at the very end, whereas ‘\z’ matches only at the end.

The ‘\G’ assertion is true only when the current matching position is at the start point
of the match. As used in Monotone, ‘\G’ is always equal to ‘\A’.

Circumflex and Dollar

Outside a character class, in the default matching mode, the circumflex character, ‘^’, is an
assertion that is true only if the current matching point is at the start of the subject string.
Inside a character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives
are involved, but it should be the first thing in each alternative in which it appears if the
pattern is ever to match that branch. If all possible alternatives start with a circumflex,
that is, if the pattern is constrained to match only at the start of the subject, it is said to
be an “anchored” pattern. (There are also other constructs that can cause a pattern to be
anchored.)

A dollar character, ‘$’, is an assertion that is true only if the current matching point is
at the end of the subject string, or immediately before a newline at the end of the string
(by default). Dollar need not be the last character of the pattern if a number of alternatives
are involved, but it should be the last item in any branch in which it appears. Dollar has
no special meaning in a character class.

The meanings of the circumflex and dollar characters are changed if the ‘(?m)’ option
is set. When this is the case, a circumflex matches immediately after internal newlines as
well as at the start of the subject string. It does not match after a newline that ends the
string. A dollar matches before any newlines in the string, as well as at the very end, when
‘(?m)’ is set. When newline is specified as the two-character sequence 〈CR〉〈LF〉, isolated 〈CR〉
and 〈LF〉 characters do not indicate newlines.

For example, the pattern ‘^abc$’ matches the subject string ‘def\nabc’ (where ‘\n’
represents a newline) in multiline mode, but not otherwise. Consequently, patterns that are
anchored in single line mode because all branches start with ^ are not anchored in multiline
mode.

Note that the sequences ‘\A’, ‘\Z’, and ‘\z’ can be used to match the start and end of the
subject in both modes, and if all branches of a pattern start with ‘\A’ it is always anchored.

Full Stop (Period, Dot)

Outside a character class, a dot in the pattern matches any one character in the subject
string except (by default) a character that signifies the end of a line. In UTF-8 mode, the
matched character may be more than one byte long.

When a line ending is defined as a single character, dot never matches that character;
when the two-character sequence 〈CR〉〈LF〉 is used, dot does not match 〈CR〉 if it is immediately
followed by 〈LF〉, but otherwise it matches all characters (including isolated 〈CR〉s and 〈LF〉s).
When any Unicode line endings are being recognized, dot does not match 〈CR〉 or 〈LF〉 or
any of the other line ending characters.

The behaviour of dot with regard to newlines can be changed. If the ‘(?s)’ option is set,
a dot matches any one character, without exception. If the two-character sequence 〈CR〉〈LF〉
is present in the subject string, it takes two dots to match it.

216 monotone documentation

The handling of dot is entirely independent of the handling of circumflex and dollar, the
only relationship being that they both involve newlines. Dot has no special meaning in a
character class.

Matching a Single Byte

Outside a character class, the escape sequence ‘\C’ matches any one byte, both in and out
of UTF-8 mode. Unlike a dot, it always matches any line-ending characters. The feature
is provided in Perl in order to match individual bytes in UTF-8 mode. Because it breaks
up UTF-8 characters into individual bytes, what remains in the string may be a malformed
UTF-8 string. For this reason, the ‘\C’ escape sequence is best avoided.

PCRE does not allow ‘\C’ to appear in lookbehind assertions (described below), because
in UTF-8 mode this would make it impossible to calculate the length of the lookbehind.

Square Brackets and Character Classes

An opening square bracket introduces a character class, terminated by a closing square
bracket. A closing square bracket on its own is not special. If a closing square bracket is
required as a member of the class, it should be the first data character in the class (after
an initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject. In UTF-8 mode, the character
may occupy more than one byte. A matched character must be in the set of characters
defined by the class, unless the first character in the class definition is a circumflex, in
which case the subject character must not be in the set defined by the class. If a circumflex
is actually required as a member of the class, ensure it is not the first character, or escape
it with a backslash.

For example, the character class ‘[aeiou]’ matches any lower case vowel, while
‘[^aeiou]’ matches any character that is not a lower case vowel. Note that a circumflex
is just a convenient notation for specifying the characters that are in the class by
enumerating those that are not. A class that starts with a circumflex is not an assertion:
it still consumes a character from the subject string, and therefore it fails if the current
pointer is at the end of the string.

In UTF-8 mode, characters with values greater than 255 can be included in a class as a
literal string of bytes, or by using the ‘\x{’ escaping mechanism.

When caseless matching is set, any letters in a class represent both their upper case
and lower case versions, so for example, a caseless ‘[aeiou]’ matches ‘A’ as well as ‘a’, and
a caseless [^aeiou] does not match ‘A’, whereas a caseful version would. In UTF-8 mode,
PCRE always understands the concept of case for characters whose values are less than 128,
so caseless matching is always possible. For characters with higher values, the concept of
case is supported if PCRE is compiled with Unicode property support, but not otherwise.
If you want to use caseless matching for characters 128 and above, you must ensure that
PCRE is compiled with Unicode property support as well as with UTF-8 support.

Characters that might indicate line breaks are never treated in any special way when
matching character classes, whatever line-ending sequence is in use, and whatever setting
of the ‘(?s)’ and ‘(?m)’ options is used. A class such as ‘[^a]’ always matches one of these
characters.

Chapter 7: Special Topics 217

The minus (hyphen) character can be used to specify a range of characters in a character
class. For example, ‘[d-m]’ matches any letter between ‘d’ and ‘m’, inclusive. If a minus
character is required in a class, it must be escaped with a backslash or appear in a position
where it cannot be interpreted as indicating a range, typically as the first or last character
in the class.

It is not possible to have the literal character ‘]’ as the end character of a range. A
pattern such as ‘[W-]46]’ is interpreted as a class of two characters (‘W’ and ‘-’) followed by
a literal string ‘46]’, so it would match ‘W46]’ or ‘-46]’. However, if the ‘]’ is escaped
with a backslash it is interpreted as the end of range, so ‘[W-\]46]’ is interpreted as
a class containing a range followed by two other characters. The octal or hexadecimal
representation of ‘]’ can also be used to end a range.

Ranges operate in the collating sequence of character values. They can also be used for
characters specified numerically, for example ‘[\000-\037]’. In UTF-8 mode, ranges can
include characters whose values are greater than 255, for example ‘[\x{100}-\x{2ff}]’.

If a range that includes letters is used when caseless matching is set, it matches the
letters in either case. For example, ‘[W-c]’ is equivalent to ‘[][\\^_‘wxyzabc]’, matched
caselessly.

The character types ‘\d’, ‘\D’, ‘\p’, ‘\P’, ‘\s’, ‘\S’, ‘\w’, and ‘\W’ may also appear in
a character class, and add the characters that they match to the class. For example,
‘[\dABCDEF]’ matches any hexadecimal digit. A circumflex can conveniently be used with
the upper case character types to specify a more restricted set of characters than the match-
ing lower case type. For example, the class ‘[^\W_]’ matches any letter or digit, but not
underscore.

The only metacharacters that are recognized in character classes are backslash, hyphen
(only where it can be interpreted as specifying a range), circumflex (only at the start),
opening square bracket (only when it can be interpreted as introducing a POSIX class
name—see the next section), and the terminating closing square bracket. However, escaping
other non-alphanumeric characters does no harm.

POSIX Character Classes

Perl supports the POSIX notation for character classes. This uses names enclosed by ‘[:’
and ‘:]’ within the enclosing square brackets. PCRE also supports this notation. For
example,

[01[:alpha:]%]

matches ‘0’, ‘1’, any alphabetic character, or ‘%’. The supported class names are

218 monotone documentation

alnum letters and digits
alpha letters
ascii character codes 0 – 127
blank space or tab only
cntrl control characters
digit decimal digits (same as ‘\d’)
graph printing characters, excluding space
lower lower case letters
print printing characters, including space
punct printing characters, excluding letters and digits
space white space (not quite the same as ‘\s’)
upper upper case letters
word “word” characters (same as ‘\w’)
xdigit hexadecimal digits

The “space” characters are 〈HT〉 (9), 〈LF〉 (10), 〈VT〉 (11), 〈FF〉 (12), 〈CR〉 (13), and space
(32). Notice that this list includes the 〈VT〉 character (code 11). This makes "space" different
to ‘\s’, which does not include 〈VT〉 (for Perl compatibility).

The name “word” is a Perl extension, and “blank” is a GNU extension from Perl 5.8.
Another Perl extension is negation, which is indicated by a ‘^’ character after the colon.
For example,

[12[:^digit:]]

matches ‘1’, ‘2’, or any non-digit. PCRE (and Perl) also recognize the POSIX syntax
‘[.ch.]’ and ‘[=ch=]’ where ch is a “collating element,” but these are not supported, and
an error is given if they are encountered.

In UTF-8 mode, characters with values greater than 128 do not match any of the POSIX
character classes.

Vertical Bar

Vertical bar characters are used to separate alternative patterns. For example, the pattern

gilbert|sullivan

matches either ‘gilbert’ or ‘sullivan’. Any number of alternatives may appear, and an
empty alternative is permitted (matching the empty string). The matching process tries
each alternative in turn, from left to right, and the first one that succeeds is used. If the
alternatives are within a subpattern (defined below), "succeeds" means matching the rest
of the main pattern as well as the alternative in the subpattern.

Internal Option Setting

The behavior of the matching engine can be adjusted from within the pattern by a sequence
of option letters enclosed between ‘(?’ and ‘)’. The option letters are

Chapter 7: Special Topics 219

i Caseless: characters in one case match the corresponding characters in other
cases as well.

m Multiline: ‘^’ and ‘$’ match at newlines as well as at beginning and end of
string.

s Dotall: dot matches any character, including newline characters.
x Extended syntax: unescaped white space is ignored and embedded comments

are possible.
J Dupnames: names for capturing subpattern need not be unique.
U Ungreedy: quantifiers match as few times as possible by default.
X Extra: for forward compatibility, give an error if any escape sequence with no

defined meaning appears.

For example, ‘(?im)’ sets caseless, multiline matching. It is also possible to unset these
options by preceding the letters with a hyphen, and a combined setting and unsetting such
as ‘(?im-sx)’ is also permitted. (This would set the caseless and multiline options while
unsetting the dotall and extended-syntax options.) If a letter appears both before and
after the hyphen, the option is unset. The lowercase option letters are Perl-compatible; the
uppercase ones are PCRE only.

When an option change occurs at top level (that is, not inside subpattern parentheses),
the change applies to the remainder of the pattern that follows. An option change within a
subpattern (see below for a description of subpatterns) affects only that part of the current
pattern that follows it, so

(a(?i)b)c

matches ‘abc’ and ‘aBc’ and no other strings. By this means, options can be made to have
different settings in different parts of the pattern. Any changes made in one alternative do
carry on into subsequent branches within the same subpattern. For example,

(a(?i)b|c)

matches ‘ab’, ‘aB’, ‘c’, and ‘C’, even though when matching ‘C’ the first branch is abandoned
before the option setting. This is because the effects of option settings happen when the
pattern is parsed. There would be some very weird behaviour otherwise.

Note: Unlike these options, the similar, PCRE-specific option sequences that start with
‘(*’ may appear only at the very beginning of the pattern. Details of these sequences are
given in the section entitled “Newline sequences,” above.

Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested. Turning
part of a pattern into a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

cat(aract|erpillar|)

matches one of the words ‘cat’, ‘cataract’, or ‘caterpillar’. Without the parenthe-
ses, it would match ‘cataract’, ‘erpillar’ or an empty string.

2. It sets up the subpattern as a capturing subpattern. As used in Monotone this only
means that during matching, the portion of the subject string that matched the sub-
pattern is available for back references. Captured subpatterns are, for instance, not

220 monotone documentation

available to callers of regex.search. Opening parentheses are counted from left to
right (starting from 1) to obtain numbers for the capturing subpatterns.
For example, if the string ‘the red king’ is matched against the pattern

the ((red|white) (king|queen))

the captured substrings are ‘red king’, ‘red’, and ‘king’, and are numbered 1, 2, and
3, respectively.

The fact that plain parentheses fulfil two functions is not always helpful. There are
often times when a grouping subpattern is required without a capturing requirement. If an
opening parenthesis is followed by a question mark and a colon, the subpattern does not do
any capturing, and is not counted when computing the number of any subsequent capturing
subpatterns. For example, if the string ‘the white queen’ is matched against the pattern

the ((?:red|white) (king|queen))

the captured substrings are ‘white queen’ and ‘queen’, and are numbered 1 and 2. The
maximum number of capturing subpatterns is 65535.

As a convenient shorthand, if any option settings are required at the start of a non-
capturing subpattern, the option letters may appear between the ‘?’ and the ‘:’. Thus the
two patterns

(?i:saturday|sunday)
(?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from left to
right, and options are not reset until the end of the subpattern is reached, an option setting
in one branch does affect subsequent branches, so the above patterns match ‘SUNDAY’ as
well as ‘Saturday’.

Duplicate Subpattern Numbers

Perl 5.10 introduced a feature whereby each alternative in a subpattern uses the same
numbers for its capturing parentheses. Such a subpattern starts with ‘(?|’ and is itself a
non-capturing subpattern. For example, consider this pattern:

(?|(Sat)ur|(Sun))day

Because the two alternatives are inside a ‘(?|’ group, both sets of capturing parentheses are
numbered one. Thus, when the pattern matches, you can look at captured substring number
one, whichever alternative matched. This construct is useful when you want to capture
part, but not all, of one of a number of alternatives. Inside a ‘(?|’ group, parentheses are
numbered as usual, but the number is reset at the start of each branch. The numbers of
any capturing buffers that follow the subpattern start after the highest number used in
any branch. The following example is taken from the Perl documentation. The numbers
underneath show in which buffer the captured content will be stored.
before ---------------branch-reset----------- after
/ (a) (?| x (y) z | (p (q) r) | (t) u (v)) (z) /x
1 2 2 3 2 3 4

A backreference or a recursive call to a numbered subpattern always refers to the first one
in the pattern with the given number.

An alternative approach to using this “branch reset” feature is to use duplicate named
subpatterns, as described in the next section.

Chapter 7: Special Topics 221

Named Subpatterns

Identifying capturing parentheses by number is simple, but it can be very hard to keep
track of the numbers in complicated regular expressions. Furthermore, if an expression
is modified, the numbers may change. To help with this difficulty, PCRE supports the
naming of subpatterns. This feature was not added to Perl until release 5.10. Python had
the feature earlier, and PCRE introduced it at release 4.0, using the Python syntax. PCRE
now supports both the Perl and the Python syntax.

In PCRE, a subpattern can be named in one of three ways: ‘(?<name>...)’ or
‘(?’name’...)’ as in Perl, or ‘(?P<name>...)’ as in Python. References to capturing
parentheses from other parts of the pattern, such as backreferences, recursion, and
conditions, can be made by name as well as by number.

Names consist of up to 32 alphanumeric characters and underscores. Named capturing
parentheses are still allocated numbers as well as names, exactly as if the names were not
present.

By default, a name must be unique within a pattern, but it is possible to relax this
constraint by setting the ‘(?J)’ option. This can be useful for patterns where only one
instance of the named parentheses can match. Suppose you want to match the name of a
weekday, either as a 3-letter abbreviation or as the full name, and in both cases you want
to extract the abbreviation. This pattern (ignoring the line breaks) does the job:

(?Jx)
(?<DN>Mon|Fri|Sun)(?:day)?|
(?<DN>Tue)(?:sday)?|
(?<DN>Wed)(?:nesday)?|
(?<DN>Thu)(?:rsday)?|
(?<DN>Sat)(?:urday)?

There are five capturing substrings, but only one is ever set after a match. (An alternative
way of solving this problem is to use a “branch reset” subpattern, as described in the
previous section.)

Repetition

Repetition is specified by quantifiers, which can follow any of the following items:
• a literal data character
• the dot metacharacter
• the ‘\C’ escape sequence
• the ‘\X’ escape sequence (in UTF-8 mode with Unicode properties)
• the ‘\R’ escape sequence
• an escape such as ‘\d’ that matches a single character
• a character class
• a back reference (see next section)
• a parenthesized subpattern (unless it is an assertion)

The general repetition quantifier specifies a minimum and maximum number of permit-
ted matches, by giving the two numbers in curly brackets (braces), separated by a comma.
The numbers must be less than 65536, and the first must be less than or equal to the second.
For example:

222 monotone documentation

z{2,4}

matches ‘zz’, ‘zzz’, or ‘zzzz’. A closing brace on its own is not a special character. If
the second number is omitted, but the comma is present, there is no upper limit; if the
second number and the comma are both omitted, the quantifier specifies an exact number
of required matches. Thus

[aeiou]{3,}

matches at least 3 successive vowels, but may match many more, while

\d{8}

matches exactly 8 digits. An opening curly bracket that appears in a position where a
quantifier is not allowed, or one that does not match the syntax of a quantifier, is taken
as a literal character. For example, ‘{,6}’ is not a quantifier, but a literal string of four
characters.

In UTF-8 mode, quantifiers apply to UTF-8 characters rather than to individual bytes.
Thus, for example, ‘\x{100}{2}’ matches two UTF-8 characters, each of which is rep-
resented by a two-byte sequence. Similarly, ‘\X{3}’ matches three Unicode extended se-
quences, each of which may be several bytes long (and they may be of different lengths).

The quantifier ‘{0}’ is permitted, causing the expression to behave as if the previous
item and the quantifier were not present.

For convenience, the three most common quantifiers have single-character abbreviations:

* is equivalent to {0,}
+ is equivalent to {1,}
? is equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match no
characters with a quantifier that has no upper limit, for example:

(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such patterns.
However, because there are cases where this can be useful, such patterns are now accepted,
but if any repetition of the subpattern does in fact match no characters, the loop is forcibly
broken.

By default, the quantifiers are greedy, that is, they match as much as possible (up to
the maximum number of permitted times), without causing the rest of the pattern to fail.
The classic example of where this gives problems is in trying to match comments in C
programs. These appear between ‘/*’ and ‘*/’, and within the comment, individual ‘*’ and
‘/’ characters may appear. An attempt to match C comments by applying the pattern

/*.**/

to the string

/* first comment */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of the ‘.*’ item.

However, if a quantifier is followed by a question mark, it ceases to be greedy, and instead
matches the minimum number of times possible, so the pattern

/*.*?*/

Chapter 7: Special Topics 223

does the right thing with the C comments. The meaning of the various quantifiers is not
otherwise changed, just the preferred number of matches. Do not confuse this use of question
mark with its use as a quantifier in its own right. Because it has two uses, it can sometimes
appear doubled, as in

\d??\d

which matches one digit by preference, but can match two if that is the only way the rest
of the pattern matches.

If the ‘(?U)’ option is set (an option that is not available in Perl), the quantifiers are
not greedy by default, but individual ones can be made greedy by following them with a
question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is
greater than 1 or with a limited maximum, more memory is required for the compiled
pattern, in proportion to the size of the minimum or maximum.

If a pattern starts with ‘.*’ or ‘.{0,}’ and the ‘(?s)’ option is set, thus allowing the
dot to match newlines, the pattern is implicitly anchored, because whatever follows will be
tried against every character position in the subject string, so there is no point in retrying
the overall match at any position after the first. PCRE normally treats such a pattern as
though it were preceded by ‘\A’.

In cases where it is known that the subject string contains no newlines, it is worth
setting ‘(?s)’ in order to obtain this optimization, or alternatively using ‘^’ or ‘\A’ to
indicate anchoring explicitly.

However, there is one situation where the optimization cannot be used. When .* is inside
capturing parentheses that are the subject of a backreference elsewhere in the pattern, a
match at the start may fail where a later one succeeds. Consider, for example:

(.*)abc\1

If the subject is ‘xyz123abc123’ the match point is the fourth character. For this reason,
such a pattern is not implicitly anchored.

When a capturing subpattern is repeated, the value captured is the substring that
matched the final iteration. For example, after

(tweedle[dume]{3}\s*)+

has matched ‘tweedledum tweedledee’ the value of the captured substring is ‘tweedledee’.
However, if there are nested capturing subpatterns, the corresponding captured values may
have been set in previous iterations. For example, after

(a|(b))+

matches ‘aba’ the value of the second captured substring is ‘b’.

Atomic Grouping and Possessive Quantifiers

With both maximizing (greedy) and minimizing (ungreedy or lazy) repetition, failure of
what follows normally causes the repeated item to be re-evaluated to see if a different
number of repeats allows the rest of the pattern to match. Sometimes it is useful to prevent
this, either to change the nature of the match, or to cause it fail earlier than it otherwise
might, when the author of the pattern knows there is no point in carrying on.

Consider, for example, the pattern ‘\d+foo’ when applied to the subject line

224 monotone documentation

123456bar

After matching all 6 digits and then failing to match ‘foo’, the normal action of the
matcher is to try again with only 5 digits matching the ‘\d+’ item, and then with 4, and
so on, before ultimately failing. Atomic grouping (a term taken from Jeffrey Friedl’s book)
provides the means for specifying that once a subpattern has matched, it is not to be
re-evaluated in this way.

If we use atomic grouping for the previous example, the matcher gives up immediately on
failing to match ‘foo’ the first time. The notation is a kind of special parenthesis, starting
with ‘(?>’ as in this example:

(?>\d+)foo

This kind of parenthesis “locks up” the part of the pattern it contains once it has matched,
and a failure further into the pattern is prevented from backtracking into it. Backtracking
past it to previous items, however, works as normal. Atomic grouping subpatterns are not
capturing subpatterns.

An alternative description is that a subpattern of this type matches the string of char-
acters that an identical standalone pattern would match, if anchored at the current point
in the subject string.

Simple cases such as the above example can be thought of as a maximizing repeat that
must swallow everything it can. So, while both ‘\d+’ and ‘\d+?’ are prepared to adjust the
number of digits they match in order to make the rest of the pattern match, ‘(?>\d+)’ can
only match an entire sequence of digits.

Atomic groups in general can of course contain arbitrarily complicated subpatterns, and
can be nested. However, when the subpattern for an atomic group is just a single repeated
item, as in the example above, a simpler notation, called a possessive quantifier, can be used.
This consists of an additional ‘+’ character following a quantifier. Using this notation, the
previous example can be rewritten as

\d++foo

Note that a possessive quantifier can be used with an entire group, for example:

(abc|xyz){2,3}+

Possessive quantifiers are always greedy; the setting of the ‘(?U)’ option is ignored. They are
a convenient notation for the simpler forms of atomic group. However, there is no difference
in the meaning of a possessive quantifier and the equivalent atomic group, though there may
be a performance difference; possessive quantifiers should be slightly faster.

The possessive quantifier syntax is an extension to the Perl 5.8 syntax. Jeffrey Friedl
originated the idea (and the name) in the first edition of his book. Mike McCloskey liked
it, so implemented it when he built Sun’s Java package, and PCRE copied it from there. It
ultimately found its way into Perl at release 5.10.

PCRE has an optimization that automatically “possessifies” certain simple pattern con-
structs. For example, the sequence ‘A+B’ is treated as ‘A++B’ because there is no point in
backtracking into a sequence of ‘A’s when ‘B’ must follow.

When a pattern contains an unlimited repeat inside a subpattern that can itself be
repeated an unlimited number of times, the use of an atomic group is the only way to avoid
some failing matches taking a very long time indeed. The pattern

Chapter 7: Special Topics 225

(\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of non-digits, or digits en-
closed in ‘<>’, followed by either ‘!’ or ‘?’. When it matches, it runs quickly. However, if it
is applied to

aa

it takes a long time before reporting failure. This is because the string can be divided
between the internal ‘\D+’ repeat and the external ‘*’ repeat in a large number of ways,
and all have to be tried. (The example uses ‘[!?]’ rather than a single character at the
end, because both PCRE and Perl have an optimization that allows for fast failure when
a single character is used. They remember the last single character that is required for a
match, and fail early if it is not present in the string.) If the pattern is changed so that it
uses an atomic group, like this:

((?>\D+)|<\d+>)*[!?]

sequences of non-digits cannot be broken, and failure happens quickly.

Back References

Outside a character class, a backslash followed by a digit greater than 0 (and possibly
further digits) is a back reference to a capturing subpattern earlier (that is, to its left) in
the pattern, provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always
taken as a back reference, and causes an error only if there are not that many capturing left
parentheses in the entire pattern. In other words, the parentheses that are referenced need
not be to the left of the reference for numbers less than 10. A “forward back reference” of
this type can make sense when a repetition is involved and the subpattern to the right has
participated in an earlier iteration.

It is not possible to have a numerical “forward back reference” to a subpattern whose
number is 10 or more using this syntax because a sequence such as ‘\50’ is interpreted as
a character defined in octal. See the subsection entitled “Non-printing characters” above
for further details of the handling of digits following a backslash. There is no such problem
when named parentheses are used. A back reference to any subpattern is possible using
named parentheses (see below).

Another way of avoiding the ambiguity inherent in the use of digits following a backslash
is to use the ‘\g’ escape sequence, which is a feature introduced in Perl 5.10. This escape
must be followed by an unsigned number or a negative number, optionally enclosed in
braces. These examples are all identical:

(ring), \1
(ring), \g1
(ring), \g{1}

An unsigned number specifies an absolute reference without the ambiguity that is present
in the older syntax. It is also useful when literal digits follow the reference. A negative
number is a relative reference. Consider this example:

(abc(def)ghi)\g{-1}

The sequence ‘\g{-1}’ is a reference to the most recently started capturing subpattern
before ‘\g’, that is, is it equivalent to ‘\2’. Similarly, ‘\g{-2}’ would be equivalent to ‘\1’.

226 monotone documentation

The use of relative references can be helpful in long patterns, and also in patterns that are
created by joining together fragments that contain references within themselves.

A back reference matches whatever actually matched the capturing subpattern in the
current subject string, rather than anything matching the subpattern itself (see “Subpat-
terns as subroutines” below for a way of doing that). So the pattern

(sens|respons)e and \1ibility

matches ‘sense and sensibility’ and ‘response and responsibility’, but not ‘sense
and responsibility’. If caseful matching is in force at the time of the back reference, the
case of letters is relevant. For example,

((?i)rah)\s+\1

matches ‘rah rah’ and ‘RAH RAH’, but not ‘RAH rah’, even though the original capturing
subpattern is matched caselessly.

There are several different ways of writing back references to named subpatterns. The
.NET syntax ‘\k{name}’ and the Perl syntax ‘\k<name>’ or ‘\k’name’’ are supported, as
is the Python syntax (?P=name). Perl 5.10’s unified back reference syntax, in which ‘\g’
can be used for both numeric and named references, is also supported. We could rewrite
the above example in any of the following ways:

(?<p1>(?i)rah)\s+\k<p1>
(?’p1’(?i)rah)\s+\k{p1}
(?P<p1>(?i)rah)\s+(?P=p1)
(?<p1>(?i)rah)\s+\g{p1}

A subpattern that is referenced by name may appear in the pattern before or after the
reference.

There may be more than one back reference to the same subpattern. If a subpattern
has not actually been used in a particular match, any back references to it always fail. For
example, the pattern

(a|(bc))\2

always fails if it starts to match ‘a’ rather than ‘bc’. Because there may be many capturing
parentheses in a pattern, all digits following the backslash are taken as part of a potential
back reference number. If the pattern continues with a digit character, some delimiter must
be used to terminate the back reference. If the ‘(?x)’ option is set, this can be whitespace.
Otherwise an empty comment (see “Comments” below) can be used.

A back reference that occurs inside the parentheses to which it refers fails when the
subpattern is first used, so, for example, ‘(a\1)’ never matches. However, such references
can be useful inside repeated subpatterns. For example, the pattern

(a|b\1)+

matches any number of ‘a’s and also ‘aba’, ‘ababbaa’ etc. At each iteration of the subpat-
tern, the back reference matches the character string corresponding to the previous iteration.
In order for this to work, the pattern must be such that the first iteration does not need to
match the back reference. This can be done using alternation, as in the example above, or
by a quantifier with a minimum of zero.

Chapter 7: Special Topics 227

Assertions

An assertion is a test on the characters following or preceding the current matching point
that does not actually consume any characters. The simple assertions coded as ‘\b’, ‘\B’,
‘\A’, ‘\G’, ‘\Z’, ‘\z’, ‘^’ and ‘$’ are described above.

More complicated assertions are coded as subpatterns. There are two kinds: those that
look ahead of the current position in the subject string, and those that look behind it. An
assertion subpattern is matched in the normal way, except that it does not cause the current
matching position to be changed.

Assertion subpatterns are not capturing subpatterns, and may not be repeated, because
it makes no sense to assert the same thing several times. If any kind of assertion contains
capturing subpatterns within it, these are counted for the purposes of numbering the cap-
turing subpatterns in the whole pattern. However, substring capturing is carried out only
for positive assertions, because it does not make sense for negative assertions.

Lookahead Assertions

Lookahead assertions start with ‘(?=’ for positive assertions and ‘(?!’ for negative asser-
tions. For example,

\w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match,
and

foo(?!bar)

matches any occurrence of ‘foo’ that is not followed by ‘bar’. Note that the apparently
similar pattern

(?!foo)bar

does not find an occurrence of ‘bar’ that is preceded by something other than ‘foo’; it finds
any occurrence of ‘bar’ whatsoever, because the assertion ‘(?!foo)’ is always true when
the next three characters are ‘bar’. A lookbehind assertion is needed to achieve the other
effect.

If you want to force a matching failure at some point in a pattern, the most convenient
way to do it is with ‘(?!)’ because an empty string always matches, so an assertion that
requires there not to be an empty string must always fail.

Lookbehind Assertions

Lookbehind assertions start with ‘(?<=’ for positive assertions and ‘(?<!’ for negative as-
sertions. For example,

(?<!foo)bar

matches an occurrence of ‘bar’ that is not preceded by ‘foo’. The contents of a lookbehind
assertion are restricted such that all the strings it matches must have a fixed length. How-
ever, if there are several top-level alternatives, they do not all have to have the same fixed
length. Thus

(?<=bullock|donkey)

is permitted, but

228 monotone documentation

(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted
only at the top level of a lookbehind assertion. This is an extension compared with Perl (at
least for 5.8), which requires all branches to match the same length of string. An assertion
such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it
is acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

In some cases, the Perl 5.10 escape sequence ‘\K’ (see above) can be used instead of a
lookbehind assertion; this is not restricted to a fixed-length.

The implementation of lookbehind assertions is, for each alternative, to temporarily
move the current position back by the fixed length and then try to match. If there are
insufficient characters before the current position, the assertion fails.

PCRE does not allow the ‘\C’ escape (which matches a single byte in UTF-8 mode) to
appear in lookbehind assertions, because it makes it impossible to calculate the length of
the lookbehind. The ‘\X’ and ‘\R’ escapes, which can match different numbers of bytes, are
also not permitted.

Possessive quantifiers can be used in conjunction with lookbehind assertions to specify
efficient matching at the end of the subject string. Consider a simple pattern such as

abcd$

when applied to a long string that does not match. Because matching proceeds from left to
right, PCRE will look for each ‘a’ in the subject and then see if what follows matches the
rest of the pattern. If the pattern is specified as

^.*abcd$

the initial ‘.*’ matches the entire string at first, but when this fails (because there is no
following ‘a’), it backtracks to match all but the last character, then all but the last two
characters, and so on. Once again the search for ‘a’ covers the entire string, from right to
left, so we are no better off. However, if the pattern is written as

^.*+(?<=abcd)

there can be no backtracking for the ‘.*+’ item; it can match only the entire string. The
subsequent lookbehind assertion does a single test on the last four characters. If it fails,
the match fails immediately. For long strings, this approach makes a significant difference
to the processing time.

Using multiple assertions

Several assertions (of any sort) may occur in succession. For example,
(?<=\d{3})(?<!999)foo

matches ‘foo’ preceded by three digits that are not ‘999’. Notice that each of the assertions
is applied independently at the same point in the subject string. First there is a check that
the previous three characters are all digits, and then there is a check that the same three
characters are not ‘999’. This pattern does not match ‘foo’ preceded by six characters, the
first of which are digits and the last three of which are not ‘999’. For example, it doesn’t
match ‘123abcfoo’. A pattern to do that is

Chapter 7: Special Topics 229

(?<=\d{3}...)(?<!999)foo

This time the first assertion looks at the preceding six characters, checking that the first
three are digits, and then the second assertion checks that the preceding three characters
are not ‘999’.

Assertions can be nested in any combination. For example,
(?<=(?<!foo)bar)baz

matches an occurrence of ‘baz’ that is preceded by ‘bar’ which in turn is not preceded by
‘foo’, while

(?<=\d{3}(?!999)...)foo

is another pattern that matches ‘foo’ preceded by three digits and any three characters
that are not ‘999’.

Conditional Subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose
between two alternative subpatterns, depending on the result of an assertion, or whether
a previous capturing subpattern matched or not. The two possible forms of conditional
subpattern are
• (?(condition)yes-pattern)
• (?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present)
is used. If there are more than two alternatives in the subpattern, a compile-time error
occurs.

There are four kinds of condition: references to subpatterns, references to recursion, a
pseudo-condition called ‘DEFINE’, and assertions.

Checking for a used subpattern by number

If the text between the parentheses consists of a sequence of digits, the condition is true if
the capturing subpattern of that number has previously matched. An alternative notation
is to precede the digits with a plus or minus sign. In this case, the subpattern number is
relative rather than absolute. The most recently opened parentheses can be referenced by
‘(?(-1)’, the next most recent by ‘(?(-2)’, and so on. In looping constructs it can also
make sense to refer to subsequent groups with constructs such as ‘(?(+2)’.

Consider the following pattern, which contains non-significant white space to make it
more readable and to divide it into three parts for ease of discussion (assume a preceding
‘(?x)’):

(\()? [^()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is present,
sets it as the first captured substring. The second part matches one or more characters
that are not parentheses. The third part is a conditional subpattern that tests whether
the first set of parentheses matched or not. If they did, that is, if subject started with an
opening parenthesis, the condition is true, and so the yes-pattern is executed and a closing
parenthesis is required. Otherwise, since no-pattern is not present, the subpattern matches
nothing. In other words, this pattern matches a sequence of non-parentheses, optionally
enclosed in parentheses.

230 monotone documentation

If you were embedding this pattern in a larger one, you could use a relative reference:
...other stuff... (\()? [^()]+ (?(-1) \)) ...

This makes the fragment independent of the parentheses in the larger pattern.

Checking for a used subpattern by name

Perl uses the syntax ‘(?(<name>)...)’ or ‘(?(’name’)...)’ to test for a used subpattern
by name. For compatibility with earlier versions of PCRE, which had this facility before
Perl, the syntax ‘(?(name)...)’ is also recognized. However, there is a possible ambiguity
with this syntax, because subpattern names may consist entirely of digits. PCRE looks first
for a named subpattern; if it cannot find one and the name consists entirely of digits, PCRE
looks for a subpattern of that number, which must be greater than zero. Using subpattern
names that consist entirely of digits is not recommended.

Rewriting the above example to use a named subpattern gives this:
(?<OPEN> \()? [^()]+ (?(<OPEN>) \))

Checking for pattern recursion

If the condition is the string ‘(R)’, and there is no subpattern with the name ‘R’, the
condition is true if a recursive call to the whole pattern or any subpattern has been made.
If digits or a name preceded by ampersand follow the letter ‘R’, for example:

(?(R3)...) or (?(R&name)...)

the condition is true if the most recent recursion is into the subpattern whose number or
name is given. This condition does not check the entire recursion stack.

At “top level,” all these recursion test conditions are false. Recursive patterns are
described below.

Defining subpatterns for use by reference only

If the condition is the string ‘(DEFINE)’, and there is no subpattern with the name ‘DEFINE’,
the condition is always false. In this case, there may be only one alternative in the subpat-
tern. It is always skipped if control reaches this point in the pattern; the idea of DEFINE
is that it can be used to define subroutines that can be referenced from elsewhere. (The
use of subroutines is described below.) For example, a pattern to match an IPv4 address
could be written like this (ignore whitespace and line breaks):

(?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d))
\b (?&byte) (\.(?&byte)){3} \b

The first part of the pattern is a DEFINE group inside which a another group named
"byte" is defined. This matches an individual component of an IPv4 address (a number
less than 256). When matching takes place, this part of the pattern is skipped because
DEFINE acts like a false condition.

The rest of the pattern uses references to the named group to match the four dot-
separated components of an IPv4 address, insisting on a word boundary at each end.

Assertion conditions

If the condition is not in any of the above formats, it must be an assertion. This may
be a positive or negative lookahead or lookbehind assertion. Consider this pattern, again
containing non-significant white space, and with the two alternatives on the second line:

Chapter 7: Special Topics 231

(?(?=[^a-z]*[a-z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence of
non-letters followed by a letter. In other words, it tests for the presence of at least one
letter in the subject. If a letter is found, the subject is matched against the first alternative;
otherwise it is matched against the second. This pattern matches strings in one of the two
forms ‘dd-aaa-dd ’ or ‘dd-dd-dd ’, where aaa are letters and dd are digits.

Comments

The sequence ‘(?#’ marks the start of a comment that continues up to the next closing
parenthesis. Nested parentheses are not permitted. The characters that make up a comment
play no part in the pattern matching at all.

If the ‘(?x)’ option is set, an unescaped ‘#’ character outside a character class introduces
a comment that continues to immediately after the next newline in the pattern.

Recursive Patterns

Consider the problem of matching a string in parentheses, allowing for unlimited nested
parentheses. Without the use of recursion, the best that can be done is to use a pattern
that matches up to some fixed depth of nesting. It is not possible to handle an arbitrary
nesting depth.

PCRE supports special syntax for recursion of the entire pattern, and also for individual
subpattern recursion. After its introduction in PCRE and Python, this kind of recursion
was introduced into Perl at release 5.10.

A special item that consists of ‘(?’ followed by a number greater than zero and a closing
parenthesis is a recursive call of the subpattern of the given number, provided that it occurs
inside that subpattern. (If not, it is a subroutine call, which is described in the next section.)
The special item ‘(?R)’ or ‘(?0)’ is a recursive call of the entire regular expression.

In PCRE (like Python, but unlike Perl), a recursive subpattern call is always treated
as an atomic group. That is, once it has matched some of the subject string, it is never
re-entered, even if it contains untried alternatives and there is a subsequent matching failure.

This PCRE pattern solves the nested parentheses problem (whitespace is insignificant):

\(((?>[^()]+) | (?R))* \)

First it matches an opening parenthesis. Then it matches any number of substrings
which can either be a sequence of non-parentheses, or a recursive match of the pattern itself
(that is, a correctly parenthesized substring). Finally there is a closing parenthesis.

If this were part of a larger pattern, you would not want to recurse the entire pattern,
so instead you could use this:

(\(((?>[^()]+) | (?1))* \))

We have put the pattern into parentheses, and caused the recursion to refer to them instead
of the whole pattern.

In a larger pattern, keeping track of parenthesis numbers can be tricky. This is made
easier by the use of relative references. (A Perl 5.10 feature.) Instead of ‘(?1)’ in the
pattern above you can write ‘(?-2)’ to refer to the second most recently opened parentheses

232 monotone documentation

preceding the recursion. In other words, a negative number counts capturing parentheses
leftwards from the point at which it is encountered.

It is also possible to refer to subsequently opened parentheses, by writing references
such as ‘(?+2)’. However, these cannot be recursive because the reference is not inside the
parentheses that are referenced. They are always subroutine calls, as described in the next
section.

An alternative approach is to use named parentheses instead. The Perl syntax for this
is ‘(?&name)’; PCRE’s earlier syntax ‘(?P>name)’ is also supported. We could rewrite the
above example as follows:

(?<pn> \(((?>[^()]+) | (?&pn))* \))

If there is more than one subpattern with the same name, the earliest one is used.
This particular example pattern that we have been looking at contains nested unlimited

repeats, and so the use of atomic grouping for matching strings of non-parentheses is im-
portant when applying the pattern to strings that do not match. For example, when this
pattern is applied to

(aaa()

it fails quickly. However, if atomic grouping is not used, the match runs for a very long
time indeed because there are so many different ways the ‘+’ and ‘*’ repeats can carve up
the subject, and all have to be tested before failure can be reported.

At the end of a match, the values set for any capturing subpatterns are those from the
outermost level of the recursion at which the subpattern value is set. If the pattern above
is matched against

(ab(cd)ef)

the value for the capturing parentheses is ‘ef’, which is the last value taken on at the top
level. If additional parentheses are added, giving

\((((?>[^()]+) | (?R))*) \)
^ ^

@end example

@noindent
the string they capture is @samp{ab(cd)ef}, the contents of the top
level parentheses.

Do not confuse the @samp{(?R)} item with the condition @samp{(?(R)},
which tests for recursion. Consider this pattern, which matches text
in angle brackets, allowing for arbitrary nesting. Only digits are
allowed in nested brackets (that is, when recursing), whereas any
characters are permitted at the outer level.

@verbatim
< (?: (?(R) \d++ | [^<>]*+) | (?R)) * >

In this pattern, ‘(?(R)’ is the start of a conditional subpattern, with two different alter-
natives for the recursive and non-recursive cases. The ‘(?R)’ item is the actual recursive
call.

Chapter 7: Special Topics 233

Subpatterns as Subroutines

If the syntax for a recursive subpattern reference (either by number or by name) is used
outside the parentheses to which it refers, it operates like a subroutine in a programming
language. The called subpattern may be defined before or after the reference. A numbered
reference can be absolute or relative, as in these examples:

(...(absolute)...)...(?2)...
(...(relative)...)...(?-1)...
(...(?+1)...(relative)...

An earlier example pointed out that the pattern
(sens|respons)e and \1ibility

matches ‘sense and sensibility’ and ‘response and responsibility’, but not ‘sense
and responsibility’. If instead the pattern

(sens|respons)e and (?1)ibility

is used, it does match ‘sense and responsibility’ as well as the other two strings. Another
example is given in the discussion of DEFINE above.

Like recursive subpatterns, a subroutine call is always treated as an atomic group. That
is, once it has matched some of the subject string, it is never re-entered, even if it contains
untried alternatives and there is a subsequent matching failure.

When a subpattern is used as a subroutine, processing options such as case-independence
are fixed when the subpattern is defined. They cannot be changed for different calls. For
example, consider this pattern:

(abc)(?i:(?-1))

It matches ‘abcabc’. It does not match ‘abcABC’ because the change of processing option
does not affect the called subpattern.

Backtracking Control

Perl 5.10 introduced a number of special backtracking control verbs, which are described
in the Perl documentation as “experimental and subject to change or removal in a future
version of Perl.” It goes on to say: “Their usage in production code should be noted to
avoid problems during upgrades.” The same remarks apply to the PCRE features described
in this section.

The new verbs make use of what was previously invalid syntax: an opening parenthesis
followed by an asterisk. In Perl, they are generally of the form ‘(*VERB:ARG)’ but PCRE
does not support the use of arguments, so its general form is just ‘(*VERB)’. Any number
of these verbs may occur in a pattern. There are two kinds:

Verbs that act immediately

The following verbs act as soon as they are encountered:

(*ACCEPT)
This verb causes the match to end successfully, skipping the remainder of the
pattern. When inside a recursion, only the innermost pattern is ended imme-
diately. PCRE differs from Perl in what happens if the ‘(*ACCEPT)’ is inside
capturing parentheses. In Perl, the data so far is captured: in PCRE no data
is captured. For example:

234 monotone documentation

A(A|B(*ACCEPT)|C)D

This matches ‘AB’, ‘AAD’, or ‘ACD’, but when it matches ‘AB’, no data is captured.
(*FAIL) or (*F)

This verb causes the match to fail, forcing backtracking to occur. It is equivalent
to ‘(?!)’ but easier to read. It is not clear whether there is any use for this
without the ability to execute code in the middle of the pattern (which Perl has
but PCRE in Monotone does not).

Verbs that act after backtracking

The following verbs do nothing when they are encountered. Matching continues with what
follows, but if there is no subsequent match, a failure is forced. The verbs differ in exactly
what kind of failure occurs.

(*COMMIT)
This verb causes the whole match to fail outright if the rest of the pattern
does not match. Even if the pattern is unanchored, no further attempts to find
a match by advancing the start point take place. Once (*COMMIT) has been
passed, the regular expression engine is committed to finding a match at the
current starting point, or not at all. For example:

a+(*COMMIT)b

This matches ‘xxaab’ but not ‘aacaab’. It can be thought of as a kind of
dynamic anchor, or “I’ve started, so I must finish.”

(*PRUNE)

This verb causes the match to fail at the current position if the rest of the
pattern does not match. If the pattern is unanchored, the normal “bump-along”
advance to the next starting character then happens. Backtracking can occur
as usual to the left of (*PRUNE), or when matching to the right of (*PRUNE),
but if there is no match to the right, backtracking cannot cross (*PRUNE). In
simple cases, the use of (*PRUNE) is just an alternative to an atomic group
or possessive quantifier, but there are some uses of (*PRUNE) that cannot be
expressed in any other way.

(*SKIP)

This verb is like (*PRUNE), except that if the pattern is unanchored, the
"bumpalong" advance is not to the next character, but to the position in the
subject where (*SKIP) was encountered. (*SKIP) signifies that whatever text
was matched leading up to it cannot be part of a successful match. Consider:

a+(*SKIP)b

If the subject is ‘aaaac...’, after the first match attempt fails (starting at
the first character in the string), the starting point skips on to start the next
attempt at ‘c’. Note that a possessive quantifer does not have the same effect in
this example; although it would suppress backtracking during the first match
attempt, the second attempt would start at the second character instead of
skipping on to ‘c’.

(*THEN)

This verb causes a skip to the next alternation if the rest of the pattern does not
match. That is, it cancels pending backtracking, but only within the current

Chapter 7: Special Topics 235

alternation. Its name comes from the observation that it can be used for a
pattern-based if-then-else block:

(COND1 (*THEN) FOO
| COND2 (*THEN) BAR
| COND3 (*THEN) BAZ) ...

If the ‘COND1’ pattern matches, ‘FOO’ is tried (and possibly further items after
the end of the group if ‘FOO’ succeeds); on failure the matcher skips to the second
alternative and tries ‘COND2’, without backtracking into COND1. If (*THEN) is
used outside of any alternation, it acts exactly like (*PRUNE).

236 monotone documentation

Appendix A: Default hooks 237

Appendix A Default hooks

This section contains the entire source code of the standard hook file, that is built in to the
monotone executable, and read before any user hooks files (unless ‘--nostd’ is passed). It
contains the default values for all hooks.

-- this is the standard set of lua hooks for monotone;
-- user-provided files can override it or add to it.

function temp_file(namehint)
local tdir
tdir = os.getenv("TMPDIR")
if tdir == nil then tdir = os.getenv("TMP") end
if tdir == nil then tdir = os.getenv("TEMP") end
if tdir == nil then tdir = "/tmp" end
local filename
if namehint == nil then

filename = string.format("%s/mtn.XXXXXX", tdir)
else

filename = string.format("%s/mtn.%s.XXXXXX", tdir, namehint)
end
local name = mkstemp(filename)
local file = io.open(name, "r+")
return file, name

end

function execute(path, ...)
local pid
local ret = -1
pid = spawn(path, unpack(arg))
if (pid ~= -1) then ret, pid = wait(pid) end
return ret

end

function execute_redirected(stdin, stdout, stderr, path, ...)
local pid
local ret = -1
io.flush();
pid = spawn_redirected(stdin, stdout, stderr, path, unpack(arg))
if (pid ~= -1) then ret, pid = wait(pid) end
return ret

end

-- Wrapper around execute to let user confirm in the case where a subprocess
-- returns immediately
-- This is needed to work around some brokenness with some merge tools
-- (e.g. on OS X)

238 monotone documentation

function execute_confirm(path, ...)
ret = execute(path, unpack(arg))

if (ret ~= 0)
then

print(gettext("Press enter"))
else

print(gettext("Press enter when the subprocess has completed"))
end
io.read()
return ret

end

-- attributes are persistent metadata about files (such as execute
-- bit, ACLs, various special flags) which we want to have set and
-- re-set any time the files are modified. the attributes themselves
-- are stored in the roster associated with the revision. each (f,k,v)
-- attribute triple turns into a call to attr_functions[k](f,v) in lua.

if (attr_init_functions == nil) then
attr_init_functions = {}

end

attr_init_functions["mtn:execute"] =
function(filename)

if (is_executable(filename)) then
return "true"

else
return nil

end
end

attr_init_functions["mtn:manual_merge"] =
function(filename)

if (binary_file(filename)) then
return "true" -- binary files must be merged manually

else
return nil

end
end

if (attr_functions == nil) then
attr_functions = {}

end

attr_functions["mtn:execute"] =
function(filename, value)

Appendix A: Default hooks 239

if (value == "true") then
make_executable(filename)

end
end

function dir_matches(name, dir)
-- helper for ignore_file, matching files within dir, or dir itself.
-- eg for dir of ’CVS’, matches CVS/, CVS/*, */CVS/ and */CVS/*
if (string.find(name, "^" .. dir .. "/")) then return true end
if (string.find(name, "^" .. dir .. "$")) then return true end
if (string.find(name, "/" .. dir .. "/")) then return true end
if (string.find(name, "/" .. dir .. "$")) then return true end
return false

end

function portable_readline(f)
line = f:read()
if line ~= nil then

line = string.gsub(line, "\r$","") -- strip possible \r left from windows editing
end
return line

end

function ignore_file(name)
-- project specific
if (ignored_files == nil) then

ignored_files = {}
local ignfile = io.open(".mtn-ignore", "r")
if (ignfile ~= nil) then

local line = portable_readline(ignfile)
while (line ~= nil) do

if line ~= "" then
table.insert(ignored_files, line)

end
line = portable_readline(ignfile)

end
io.close(ignfile)

end
end

local warn_reported_file = false
for i, line in pairs(ignored_files)
do

if (line ~= nil) then
local pcallstatus, result = pcall(function()
return regex.search(line, name)

end)

240 monotone documentation

if pcallstatus == true then
-- no error from the regex.search call
if result == true then return true end

else
-- regex.search had a problem, warn the user their
-- .mtn-ignore file syntax is wrong

if not warn_reported_file then
io.stderr:write("mtn: warning: while matching file ’"

.. name .. "’:\n")
warn_reported_file = true

end
io.stderr:write(".mtn-ignore:" .. i .. ": warning: " .. result

.. "\n\t- skipping this regex for "
.. "all remaining files.\n")

ignored_files[i] = nil
end

end
end

local file_pats = {
-- c/c++
"%.a$", "%.so$", "%.o$", "%.la$", "%.lo$", "^core$",
"/core$", "/core%.%d+$",
-- java
"%.class$",
-- python
"%.pyc$", "%.pyo$",
-- gettext
"%.g?mo$",
-- intltool
"%.intltool%-merge%-cache$",
-- TeX
"%.aux$",
-- backup files
"%.bak$", "%.orig$", "%.rej$", "%~$",
-- vim creates .foo.swp files
"%.[^/]*%.swp$",
-- emacs creates #foo# files
"%#[^/]*%#$",
-- other VCSes (where metadata is stored in named files):
"%.scc$",
-- desktop/directory configuration metadata
"^%.DS_Store$", "/%.DS_Store$", "^desktop%.ini$", "/desktop%.ini$"

}

local dir_pats = {
-- autotools detritus:

Appendix A: Default hooks 241

"autom4te%.cache", "%.deps", "%.libs",
-- Cons/SCons detritus:
"%.consign", "%.sconsign",
-- other VCSes (where metadata is stored in named dirs):
"CVS", "%.svn", "SCCS", "_darcs", "%.cdv", "%.git", "%.bzr", "%.hg"

}

for _, pat in ipairs(file_pats) do
if string.find(name, pat) then return true end

end
for _, pat in ipairs(dir_pats) do

if dir_matches(name, pat) then return true end
end

return false;
end

-- return true means "binary", false means "text",
-- nil means "unknown, try to guess"
function binary_file(name)

-- some known binaries, return true
local bin_pats = {

"%.gif$", "%.jpe?g$", "%.png$", "%.bz2$", "%.gz$", "%.zip$",
"%.class$", "%.jar$", "%.war$", "%.ear$"

}

-- some known text, return false
local txt_pats = {

"%.cc?$", "%.cxx$", "%.hh?$", "%.hxx$", "%.cpp$", "%.hpp$",
"%.lua$", "%.texi$", "%.sql$", "%.java$"

}

local lowname=string.lower(name)
for _, pat in ipairs(bin_pats) do

if string.find(lowname, pat) then return true end
end
for _, pat in ipairs(txt_pats) do

if string.find(lowname, pat) then return false end
end

-- unknown - read file and use the guess-binary
-- monotone built-in function
return guess_binary_file_contents(name)

end

-- given a file name, return a regular expression which will match
-- lines that name top-level constructs in that file, or "", to disable

242 monotone documentation

-- matching.
function get_encloser_pattern(name)

-- texinfo has special sectioning commands
if (string.find(name, "%.texi$")) then

-- sectioning commands in texinfo: @node, @chapter, @top,
-- @((sub)?sub)?section, @unnumbered(((sub)?sub)?sec)?,
-- @appendix(((sub)?sub)?sec)?, @(|major|chap|sub(sub)?)heading
return ("^@("

.. "node|chapter|top"

.. "|((sub)?sub)?section"

.. "|(unnumbered|appendix)(((sub)?sub)?sec)?"

.. "|(major|chap|sub(sub)?)?heading"

.. ")")
end
-- LaTeX has special sectioning commands. This rule is applied to ordinary
-- .tex files too, since there’s no reliable way to distinguish those from
-- latex files anyway, and there’s no good pattern we could use for
-- arbitrary plain TeX anyway.
if (string.find(name, "%.tex$")

or string.find(name, "%.ltx$")
or string.find(name, "%.latex$")) then
return ("\\\\("

.. "part|chapter|paragraph|subparagraph"

.. "|((sub)?sub)?section"

.. ")")
end
-- There’s no good way to find section headings in raw text, and trying
-- just gives distracting output, so don’t even try.
if (string.find(name, "%.txt$")

or string.upper(name) == "README") then
return ""

end
-- This default is correct surprisingly often -- in pretty much any text
-- written with code-like indentation.
return "^[[:alnum:]$_]"

end

function edit_comment(basetext, user_log_message)
local exe = nil
if (program_exists_in_path("vi")) then exe = "vi" end
if (string.sub(get_ostype(), 1, 6) ~= "CYGWIN" and program_exists_in_path("notepad.exe")) then exe = "notepad.exe" end
local debian_editor = io.open("/usr/bin/editor")
if (debian_editor ~= nil) then

debian_editor:close()
exe = "/usr/bin/editor"

end
local visual = os.getenv("VISUAL")

Appendix A: Default hooks 243

if (visual ~= nil) then exe = visual end
local editor = os.getenv("EDITOR")
if (editor ~= nil) then exe = editor end

if (exe == nil) then
io.write("Could not find editor to enter commit message\n"

.. "Try setting the environment variable EDITOR\n")
return nil

end

local tmp, tname = temp_file()
if (tmp == nil) then return nil end
basetext = "MTN: " .. string.gsub(basetext, "\n", "\nMTN: ") .. "\n"
tmp:write(user_log_message)
if user_log_message == "" or string.sub(user_log_message, -1) ~= "\n" then

tmp:write("\n")
end
tmp:write(basetext)
io.close(tmp)

if (execute(exe, tname) ~= 0) then
io.write(string.format(gettext("Error running editor ’%s’ to enter log message\n"),

exe))
os.remove(tname)
return nil

end

tmp = io.open(tname, "r")
if (tmp == nil) then os.remove(tname); return nil end
local res = ""
local line = tmp:read()
while(line ~= nil) do

if (not string.find(line, "^MTN:")) then
res = res .. line .. "\n"

end
line = tmp:read()

end
io.close(tmp)
os.remove(tname)
return res

end

function persist_phrase_ok()
return true

end

244 monotone documentation

function use_inodeprints()
return false

end

-- trust evaluation hooks

function intersection(a,b)
local s={}
local t={}
for k,v in pairs(a) do s[v] = 1 end
for k,v in pairs(b) do if s[v] ~= nil then table.insert(t,v) end end
return t

end

function get_revision_cert_trust(signers, id, name, val)
return true

end

function get_manifest_cert_trust(signers, id, name, val)
return true

end

function get_file_cert_trust(signers, id, name, val)
return true

end

function accept_testresult_change(old_results, new_results)
local reqfile = io.open("_MTN/wanted-testresults", "r")
if (reqfile == nil) then return true end
local line = reqfile:read()
local required = {}
while (line ~= nil)
do

required[line] = true
line = reqfile:read()

end
io.close(reqfile)
for test, res in pairs(required)
do

if old_results[test] == true and new_results[test] ~= true
then

return false
end

end
return true

Appendix A: Default hooks 245

end

-- merger support

-- Fields in the mergers structure:
-- cmd : a function that performs the merge operation using the chosen
-- program, best try.
-- available : a function that checks that the needed program is installed and
-- in $PATH
-- wanted : a function that checks if the user doesn’t want to use this
-- method, and returns false if so. This should normally return
-- true, but in some cases, especially when the merger is really
-- an editor, the user might have a preference in EDITOR and we
-- need to respect that.
-- NOTE: wanted is only used when the user has NOT defined the
-- ‘merger’ variable or the MTN_MERGE environment variable.
mergers = {}

-- This merger is designed to fail if there are any conflicts without trying to resolve them
mergers.fail = {

cmd = function (tbl) return false end,
available = function () return true end,
wanted = function () return true end

}

mergers.meld = {
cmd = function (tbl)

io.write (string.format("\nWARNING: ’meld’ was choosen to perform external 3-way merge.\n"..
"You should merge all changes to *CENTER* file due to limitation of program\n"..
"arguments.\n\n"))

local path = "meld"
local ret = execute(path, tbl.lfile, tbl.afile, tbl.rfile)
if (ret ~= 0) then

io.write(string.format(gettext("Error running merger ’%s’\n"), path))
return false

end
return tbl.afile

end ,
available = function () return program_exists_in_path("meld") end,
wanted = function () return true end

}

mergers.tortoise = {
cmd = function (tbl)

local path = "tortoisemerge"
local ret = execute(path,

string.format("/base:%s", tbl.afile),

246 monotone documentation

string.format("/theirs:%s", tbl.lfile),
string.format("/mine:%s", tbl.rfile),
string.format("/merged:%s", tbl.outfile))

if (ret ~= 0) then
io.write(string.format(gettext("Error running merger ’%s’\n"), path))
return false

end
return tbl.outfile

end ,
available = function() return program_exists_in_path ("tortoisemerge") end,
wanted = function () return true end

}

mergers.vim = {
cmd = function (tbl)

function execute_diff3(mine, yours, out)
local diff3_args = {

"diff3",
"--merge",
"--easy-only",

}
table.insert(diff3_args, string.gsub(mine, "\\", "/") .. "")
table.insert(diff3_args, string.gsub(tbl.afile, "\\", "/") .. "")
table.insert(diff3_args, string.gsub(yours, "\\", "/") .. "")

return execute_redirected("", string.gsub(out, "\\", "/"), "", unpack(diff3_args))
end

io.write (string.format("\nWARNING: ’vim’ was choosen to perform external 3-way merge.\n"..
"You should merge all changes to *LEFT* file due to limitation of program\n"..
"arguments.\n\n"))

local vim
if os.getenv ("DISPLAY") ~= nil and program_exists_in_path ("gvim") then
vim = "gvim"
else
vim = "vim"
end

local lfile_merged = tbl.lfile .. ".merged"
local rfile_merged = tbl.rfile .. ".merged"

-- first merge lfile using diff3
local ret = execute_diff3(tbl.lfile, tbl.rfile, lfile_merged)
if ret == 2 then

io.write(string.format(gettext("Error running diff3 for merger ’%s’\n"), vim))
os.remove(lfile_merged)

Appendix A: Default hooks 247

return false
end

-- now merge rfile using diff3
ret = execute_diff3(tbl.rfile, tbl.lfile, rfile_merged)
if ret == 2 then

io.write(string.format(gettext("Error running diff3 for merger ’%s’\n"), vim))
os.remove(lfile_merged)
os.remove(rfile_merged)

return false
end

os.rename(lfile_merged, tbl.lfile)
os.rename(rfile_merged, tbl.rfile)

local ret = execute(vim, "-f", "-d", "-c", string.format("silent file %s", tbl.outfile),
tbl.lfile, tbl.rfile)

if (ret ~= 0) then
io.write(string.format(gettext("Error running merger ’%s’\n"), vim))
return false

end
return tbl.outfile

end ,
available =

function ()
return program_exists_in_path("diff3") and

(program_exists_in_path("vim") or
program_exists_in_path("gvim"))

end ,
wanted =

function ()
local editor = os.getenv("EDITOR")
if editor and

not (string.find(editor, "vim") or
string.find(editor, "gvim")) then
return false

end
return true
end

}

mergers.rcsmerge = {
cmd = function (tbl)

-- XXX: This is tough - should we check if conflict markers stay or not?
-- If so, we should certainly give the user some way to still force
-- the merge to proceed since they can appear in the files (and I saw
-- that). --pasky

248 monotone documentation

local merge = os.getenv("MTN_RCSMERGE")
if execute(merge, tbl.lfile, tbl.afile, tbl.rfile) == 0 then

copy_text_file(tbl.lfile, tbl.outfile);
return tbl.outfile

end
local ret = execute("vim", "-f", "-c", string.format("file %s", tbl.outfile

),
tbl.lfile)

if (ret ~= 0) then
io.write(string.format(gettext("Error running merger ’%s’\n"), "vim"))
return false

end
return tbl.outfile

end,
available =

function ()
local merge = os.getenv("MTN_RCSMERGE")
return merge and

program_exists_in_path(merge) and program_exists_in_path("vim")
end ,

wanted = function () return os.getenv("MTN_RCSMERGE") ~= nil end
}

-- GNU diffutils based merging
mergers.diffutils = {

-- merge procedure execution
cmd = function (tbl)

-- parse options
local option = {}
option.partial = false
option.diff3opts = ""
option.sdiffopts = ""
local options = os.getenv("MTN_MERGE_DIFFUTILS")
if options ~= nil then

for spec in string.gmatch(options, "%s*(%w[^,]*)%s*,?") do
local name, value = string.match(spec, "^(%w+)=([^,]*)")
if name == nil then

name = spec
value = true

end
if type(option[name]) == "nil" then

io.write("mtn: " .. string.format(gettext("invalid \"diffutils\" merger option \"%s\""), name) .. "\n")
return false

end
option[name] = value

end
end

Appendix A: Default hooks 249

-- determine the diff3(1) command
local diff3 = {

"diff3",
"--merge",
"--label", string.format("%s [left]", tbl.left_path),
"--label", string.format("%s [ancestor]", tbl.anc_path),
"--label", string.format("%s [right]", tbl.right_path),

}
if option.diff3opts ~= "" then

for opt in string.gmatch(option.diff3opts, "%s*([^%s]+)%s*") do
table.insert(diff3, opt)

end
end
table.insert(diff3, string.gsub(tbl.lfile, "\\", "/") .. "")
table.insert(diff3, string.gsub(tbl.afile, "\\", "/") .. "")
table.insert(diff3, string.gsub(tbl.rfile, "\\", "/") .. "")

-- dispatch according to major operation mode
if option.partial then

-- partial batch/non-modal 3-way merge "resolution":
-- simply merge content with help of conflict markers
io.write("mtn: " .. gettext("3-way merge via GNU diffutils, resolving conflicts via conflict markers") .. "\n")
local ret = execute_redirected("", string.gsub(tbl.outfile, "\\", "/"), "", unpack(diff3))
if ret == 2 then

io.write("mtn: " .. gettext("error running GNU diffutils 3-way difference/merge tool \"diff3\"") .. "\n")
return false

end
return tbl.outfile

else
-- real interactive/modal 3/2-way merge resolution:
-- display 3-way merge conflict and perform 2-way merge resolution
io.write("mtn: " .. gettext("3-way merge via GNU diffutils, resolving conflicts via interactive prompt") .. "\n")

-- display 3-way merge conflict (batch)
io.write("\n")
io.write("mtn: " .. gettext("---- CONFLICT SUMMARY --") .. "\n")
local ret = execute(unpack(diff3))
if ret == 2 then

io.write("mtn: " .. gettext("error running GNU diffutils 3-way difference/merge tool \"diff3\"") .. "\n")
return false

end

-- perform 2-way merge resolution (interactive)
io.write("\n")
io.write("mtn: " .. gettext("---- CONFLICT RESOLUTION ---") .. "\n")
local sdiff = {

250 monotone documentation

"sdiff",
"--diff-program=diff",
"--suppress-common-lines",
"--minimal",
"--output=" .. string.gsub(tbl.outfile, "\\", "/")

}
if option.sdiffopts ~= "" then

for opt in string.gmatch(option.sdiffopts, "%s*([^%s]+)%s*") do
table.insert(sdiff, opt)

end
end
table.insert(sdiff, string.gsub(tbl.lfile, "\\", "/") .. "")
table.insert(sdiff, string.gsub(tbl.rfile, "\\", "/") .. "")
local ret = execute(unpack(sdiff))
if ret == 2 then

io.write("mtn: " .. gettext("error running GNU diffutils 2-way merging tool \"sdiff\"") .. "\n")
return false

end
return tbl.outfile

end
end,

-- merge procedure availability check
available = function ()

-- make sure the GNU diffutils tools are available
return program_exists_in_path("diff3") and

program_exists_in_path("sdiff") and
program_exists_in_path("diff");

end,

-- merge procedure request check
wanted = function ()

-- assume it is requested (if it is available at all)
return true

end
}

mergers.emacs = {
cmd = function (tbl)

local emacs
if program_exists_in_path("xemacs") then

emacs = "xemacs"
else

emacs = "emacs"
end
local elisp = "(ediff-merge-files-with-ancestor \"%s\" \"%s\" \"%s\" nil \"%s\")"
-- Converting backslashes is necessary on Win32 MinGW; emacs

Appendix A: Default hooks 251

-- lisp string syntax says ’\’ is an escape.
local ret = execute(emacs, "--eval",

string.format(elisp,
string.gsub (tbl.lfile, "\\", "/"),
string.gsub (tbl.rfile, "\\", "/"),
string.gsub (tbl.afile, "\\", "/"),
string.gsub (tbl.outfile, "\\", "/")))

if (ret ~= 0) then
io.write(string.format(gettext("Error running merger ’%s’\n"), emacs))
return false

end
return tbl.outfile

end,
available =

function ()
return program_exists_in_path("xemacs") or

program_exists_in_path("emacs")
end ,

wanted =
function ()
local editor = os.getenv("EDITOR")
if editor and

not (string.find(editor, "emacs") or
string.find(editor, "gnu")) then
return false

end
return true
end

}

mergers.xxdiff = {
cmd = function (tbl)

local path = "xxdiff"
local ret = execute(path,

"--title1", tbl.left_path,
"--title2", tbl.right_path,
"--title3", tbl.merged_path,
tbl.lfile, tbl.afile, tbl.rfile,
"--merge",
"--merged-filename", tbl.outfile,
"--exit-with-merge-status")

if (ret ~= 0) then
io.write(string.format(gettext("Error running merger ’%s’\n"), path))
return false

end
return tbl.outfile

end,

252 monotone documentation

available = function () return program_exists_in_path("xxdiff") end,
wanted = function () return true end

}

mergers.kdiff3 = {
cmd = function (tbl)

local path = "kdiff3"
local ret = execute(path,

"--L1", tbl.anc_path,
"--L2", tbl.left_path,
"--L3", tbl.right_path,
tbl.afile, tbl.lfile, tbl.rfile,
"--merge",
"--o", tbl.outfile)

if (ret ~= 0) then
io.write(string.format(gettext("Error running merger ’%s’\n"), path))
return false

end
return tbl.outfile

end,
available = function () return program_exists_in_path("kdiff3") end,
wanted = function () return true end

}

mergers.opendiff = {
cmd = function (tbl)

local path = "opendiff"
-- As opendiff immediately returns, let user confirm manually
local ret = execute_confirm(path,

tbl.lfile,tbl.rfile,
"-ancestor",tbl.afile,
"-merge",tbl.outfile)

if (ret ~= 0) then
io.write(string.format(gettext("Error running merger ’%s’\n"), path))
return false

end
return tbl.outfile

end,
available = function () return program_exists_in_path("opendiff") end,
wanted = function () return true end

}

function write_to_temporary_file(data, namehint)
tmp, filename = temp_file(namehint)
if (tmp == nil) then

return nil
end;

Appendix A: Default hooks 253

tmp:write(data)
io.close(tmp)
return filename

end

function copy_text_file(srcname, destname)
src = io.open(srcname, "r")
if (src == nil) then return nil end
dest = io.open(destname, "w")
if (dest == nil) then return nil end

while true do
local line = src:read()
if line == nil then break end
dest:write(line, "\n")

end

io.close(dest)
io.close(src)

end

function read_contents_of_file(filename, mode)
tmp = io.open(filename, mode)
if (tmp == nil) then

return nil
end
local data = tmp:read("*a")
io.close(tmp)
return data

end

function program_exists_in_path(program)
return existsonpath(program) == 0

end

function get_preferred_merge3_command (tbl)
local default_order = {"kdiff3", "xxdiff", "opendiff", "tortoise", "emacs", "vim", "meld", "diffutils"}
local function existmerger(name)

local m = mergers[name]
if type(m) == "table" and m.available(tbl) then

return m.cmd
end
return nil

end
local function trymerger(name)

local m = mergers[name]
if type(m) == "table" and m.available(tbl) and m.wanted(tbl) then

254 monotone documentation

return m.cmd
end
return nil

end
-- Check if there’s a merger given by the user.
local mkey = os.getenv("MTN_MERGE")
if not mkey then mkey = merger end
if not mkey and os.getenv("MTN_RCSMERGE") then mkey = "rcsmerge" end
-- If there was a user-given merger, see if it exists. If it does, return
-- the cmd function. If not, return nil.
local c
if mkey then c = existmerger(mkey) end
if c then return c,mkey end
if mkey then return nil,mkey end
-- If there wasn’t any user-given merger, take the first that’s available
-- and wanted.
for _,mkey in ipairs(default_order) do

c = trymerger(mkey) ; if c then return c,mkey end
end

end

function merge3 (anc_path, left_path, right_path, merged_path, ancestor, left, right)
local ret = nil
local tbl = {}

tbl.anc_path = anc_path
tbl.left_path = left_path
tbl.right_path = right_path

tbl.merged_path = merged_path
tbl.afile = nil
tbl.lfile = nil
tbl.rfile = nil
tbl.outfile = nil
tbl.meld_exists = false
tbl.lfile = write_to_temporary_file (left, "left")
tbl.afile = write_to_temporary_file (ancestor, "ancestor")
tbl.rfile = write_to_temporary_file (right, "right")
tbl.outfile = write_to_temporary_file ("", "merged")

if tbl.lfile ~= nil and tbl.rfile ~= nil and tbl.afile ~= nil and tbl.outfile ~= nil
then

local cmd,mkey = get_preferred_merge3_command (tbl)
if cmd ~=nil
then

io.write ("mtn: " .. string.format(gettext("executing external 3-way merge via \"%s\" merger\n"), mkey))
ret = cmd (tbl)

Appendix A: Default hooks 255

if not ret then
ret = nil

else
ret = read_contents_of_file (ret, "r")
if string.len (ret) == 0
then

ret = nil
end

end
else
if mkey then

io.write (string.format("The possible commands for the "..mkey.." merger aren’t available.\n"..
"You may want to check that $MTN_MERGE or the lua variable ‘merger’ is set\n"..
"to something available. If you want to use vim or emacs, you can also\n"..

"set $EDITOR to something appropriate.\n"))
else

io.write (string.format("No external 3-way merge command found.\n"..
"You may want to check that $EDITOR is set to an editor that supports 3-way\n"..
"merge, set this explicitly in your get_preferred_merge3_command hook,\n"..
"or add a 3-way merge program to your path.\n"))

end
end

end

os.remove (tbl.lfile)
os.remove (tbl.rfile)
os.remove (tbl.afile)
os.remove (tbl.outfile)

return ret
end

-- expansion of values used in selector completion

function expand_selector(str)

-- something which looks like a generic cert pattern
if string.find(str, "^[^=]*=.*$")
then

return ("c:" .. str)
end

-- something which looks like an email address
if string.find(str, "[%w%-_]+@[%w%-_]+")
then

return ("a:" .. str)
end

256 monotone documentation

-- something which looks like a branch name
if string.find(str, "[%w%-]+%.[%w%-]+")
then

return ("b:" .. str)
end

-- a sequence of nothing but hex digits
if string.find(str, "^%x+$")
then

return ("i:" .. str)
end

-- tries to expand as a date
local dtstr = expand_date(str)
if dtstr ~= nil
then

return ("d:" .. dtstr)
end

return nil
end

-- expansion of a date expression
function expand_date(str)

-- simple date patterns
if string.find(str, "^19%d%d%-%d%d")

or string.find(str, "^20%d%d%-%d%d")
then

return (str)
end

-- "now"
if str == "now"
then

local t = os.time(os.date(’!*t’))
return os.date("%FT%T", t)

end

-- today don’t uses the time # for xgettext’s sake, an extra quote
if str == "today"
then

local t = os.time(os.date(’!*t’))
return os.date("%F", t)

end

-- "yesterday", the source of all hangovers

Appendix A: Default hooks 257

if str == "yesterday"
then

local t = os.time(os.date(’!*t’))
return os.date("%F", t - 86400)

end

-- "CVS style" relative dates such as "3 weeks ago"
local trans = {

minute = 60;
hour = 3600;
day = 86400;
week = 604800;
month = 2678400;
year = 31536000

}
local pos, len, n, type = string.find(str, "(%d+) ([minutehordaywk]+)s? ago")
if trans[type] ~= nil
then

local t = os.time(os.date(’!*t’))
if trans[type] <= 3600
then
return os.date("%FT%T", t - (n * trans[type]))

else
return os.date("%F", t - (n * trans[type]))

end
end

return nil
end

external_diff_default_args = "-u"

-- default external diff, works for gnu diff
function external_diff(file_path, data_old, data_new, is_binary, diff_args, rev_old, rev_new)

local old_file = write_to_temporary_file(data_old);
local new_file = write_to_temporary_file(data_new);

if diff_args == nil then diff_args = external_diff_default_args end
execute("diff", diff_args, "--label", file_path .. "\told", old_file, "--label", file_path .. "\tnew", new_file);

os.remove (old_file);
os.remove (new_file);

end

-- netsync permissions hooks (and helper)

258 monotone documentation

function globish_match(glob, str)
local pcallstatus, result = pcall(function() if (globish.match(glob, str)) then return true else return false end end)
if pcallstatus == true then

-- no error
return result

else
-- globish.match had a problem
return nil

end
end

function get_netsync_read_permitted(branch, ident)
local permfile = io.open(get_confdir() .. "/read-permissions", "r")
if (permfile == nil) then return false end
local dat = permfile:read("*a")
io.close(permfile)
local res = parse_basic_io(dat)
if res == nil then

io.stderr:write("file read-permissions cannot be parsed\n")
return false

end
local matches = false
local cont = false
for i, item in pairs(res)
do

-- legal names: pattern, allow, deny, continue
if item.name == "pattern" then

if matches and not cont then return false end
matches = false
cont = false
for j, val in pairs(item.values) do

if globish_match(val, branch) then matches = true end
end

elseif item.name == "allow" then if matches then
for j, val in pairs(item.values) do

if val == "*" then return true end
if val == "" and ident == nil then return true end
if globish_match(val, ident) then return true end

end
end elseif item.name == "deny" then if matches then

for j, val in pairs(item.values) do
if val == "*" then return false end
if val == "" and ident == nil then return false end
if globish_match(val, ident) then return false end

end
end elseif item.name == "continue" then if matches then

cont = true

Appendix A: Default hooks 259

for j, val in pairs(item.values) do
if val == "false" or val == "no" then cont = false end

end
end elseif item.name ~= "comment" then

io.stderr:write("unknown symbol in read-permissions: " .. item.name .. "\n")
return false

end
end
return false

end

function get_netsync_write_permitted(ident)
local permfile = io.open(get_confdir() .. "/write-permissions", "r")
if (permfile == nil) then

return false
end
local matches = false
local line = permfile:read()
while (not matches and line ~= nil) do

local _, _, ln = string.find(line, "%s*([^%s]*)%s*")
if ln == "*" then matches = true end
if globish_match(ln, ident) then matches = true end
line = permfile:read()

end
io.close(permfile)
return matches

end

-- This is a simple function which assumes you’re going to be spawning
-- a copy of mtn, so reuses a common bit at the end for converting
-- local args into remote args. You might need to massage the logic a
-- bit if this doesn’t fit your assumptions.

function get_netsync_connect_command(uri, args)

local argv = nil

if uri["scheme"] == "ssh"
and uri["host"]
and uri["path"] then

argv = { "ssh" }
if uri["user"] then

table.insert(argv, "-l")
table.insert(argv, uri["user"])

end
if uri["port"] then

260 monotone documentation

table.insert(argv, "-p")
table.insert(argv, uri["port"])

end

-- ssh://host/~/dir/file.mtn or
-- ssh://host/~user/dir/file.mtn should be home-relative
if string.find(uri["path"], "^/~") then

uri["path"] = string.sub(uri["path"], 2)
end

table.insert(argv, uri["host"])
end

if uri["scheme"] == "file" and uri["path"] then
argv = { }

end

if uri["scheme"] == "ssh+ux"
and uri["host"]
and uri["path"] then

argv = { "ssh" }
if uri["user"] then

table.insert(argv, "-l")
table.insert(argv, uri["user"])

end
if uri["port"] then

table.insert(argv, "-p")
table.insert(argv, uri["port"])

end

-- ssh://host/~/dir/file.mtn or
-- ssh://host/~user/dir/file.mtn should be home-relative
if string.find(uri["path"], "^/~") then

uri["path"] = string.sub(uri["path"], 2)
end

table.insert(argv, uri["host"])
table.insert(argv, get_remote_unix_socket_command(uri["host"]))
table.insert(argv, "-")
table.insert(argv, "UNIX-CONNECT:" .. uri["path"])

else
-- start remote monotone process
if argv then

table.insert(argv, get_mtn_command(uri["host"]))

Appendix A: Default hooks 261

if args["debug"] then
table.insert(argv, "--debug")

else
table.insert(argv, "--quiet")

end

table.insert(argv, "--db")
table.insert(argv, uri["path"])
table.insert(argv, "serve")
table.insert(argv, "--stdio")
table.insert(argv, "--no-transport-auth")

end
end
return argv

end

function use_transport_auth(uri)
if uri["scheme"] == "ssh"
or uri["scheme"] == "ssh+ux"
or uri["scheme"] == "file" then

return false
else

return true
end

end

function get_mtn_command(host)
return "mtn"

end

function get_default_command_options(command)
local default_args = {}
return default_args

end

hook_wrapper_dump = {}
hook_wrapper_dump.depth = 0
hook_wrapper_dump._string = function(s) return string.format("%q", s) end
hook_wrapper_dump._number = function(n) return tostring(n) end
hook_wrapper_dump._boolean = function(b) if (b) then return "true" end return "false" end
hook_wrapper_dump._userdata = function(u) return "nil --[[userdata]]" end
-- if we really need to return / serialize functions we could do it
-- like cbreak@irc.freenode.net did here: http://lua-users.org/wiki/TablePersistence
hook_wrapper_dump._function = function(f) return "nil --[[function]]" end
hook_wrapper_dump._nil = function(n) return "nil" end
hook_wrapper_dump._thread = function(t) return "nil --[[thread]]" end

262 monotone documentation

hook_wrapper_dump._lightuserdata = function(l) return "nil --[[lightuserdata]]" end

hook_wrapper_dump._table = function(t)
local buf = ’’
if (hook_wrapper_dump.depth > 0) then

buf = buf .. ’{\n’
end
hook_wrapper_dump.depth = hook_wrapper_dump.depth + 1;
for k,v in pairs(t) do

buf = buf..string.format(’%s[%s] = %s;\n’,
string.rep("\t", hook_wrapper_dump.depth - 1),
hook_wrapper_dump["_" .. type(k)](k),
hook_wrapper_dump["_" .. type(v)](v))

end
hook_wrapper_dump.depth = hook_wrapper_dump.depth - 1;
if (hook_wrapper_dump.depth > 0) then

buf = buf .. string.rep("\t", hook_wrapper_dump.depth - 1) .. ’}’
end
return buf

end

function hook_wrapper(func_name, ...)
-- we have to ensure that nil arguments are restored properly for the
-- function call, see http://lua-users.org/wiki/StoringNilsInTables
local args = { n=select(’#’, ...), ... }
for i=1,args.n do

local val = assert(loadstring("return " .. args[i]),
"argument "..args[i].." could not be evaluated")()

assert(val ~= nil or args[i] == "nil",
"argument "..args[i].." was evaluated to nil")

args[i] = val
end
local res = { _G[func_name](unpack(args, 1, args.n)) }
return hook_wrapper_dump._table(res)

end

function get_remote_unix_socket_command(host)
return "socat"

end

do
-- Hook functions are tables containing any of the following 6 items
-- with associated functions:
--
-- startup Corresponds to note_mtn_startup()
-- start Corresponds to note_netsync_start()

Appendix A: Default hooks 263

-- revision_received Corresponds to note_netsync_revision_received()
-- cert_received Corresponds to note_netsync_cert_received()
-- pubkey_received Corresponds to note_netsync_pubkey_received()
-- end Corresponds to note_netsync_end()
--
-- Those functions take exactly the same arguments as the corresponding
-- global functions, but return a different kind of value, a tuple
-- composed of a return code and a value to be returned back to monotone.
-- The codes are strings:
-- "continue" and "stop"
-- When the code "continue" is returned and there’s another notifier, the
-- second value is ignored and the next notifier is called. Otherwise,
-- the second value is returned immediately.
local hook_functions = {}
local supported_items = {

"startup",
"start", "revision_received", "revision_sent", "cert_received", "cert_sent",
"pubkey_received", "pubkey_sent", "end"

}

function _hook_functions_helper(f,...)
local s = "continue"
local v = nil
for _,n in pairs(hook_functions) do
if n[f] then

s,v = n[f](...)
end
if s ~= "continue" then

break
end
end
return v

end
function note_mtn_startup(...)

return _hook_functions_helper("startup",...)
end
function note_netsync_start(...)

return _hook_functions_helper("start",...)
end
function note_netsync_revision_received(...)

return _hook_functions_helper("revision_received",...)
end
function note_netsync_revision_sent(...)

return _hook_functions_helper("revision_sent",...)
end
function note_netsync_cert_received(...)

return _hook_functions_helper("cert_received",...)

264 monotone documentation

end
function note_netsync_cert_sent(...)

return _hook_functions_helper("cert_sent",...)
end
function note_netsync_pubkey_received(...)

return _hook_functions_helper("pubkey_received",...)
end
function note_netsync_pubkey_sent(...)

return _hook_functions_helper("pubkey_sent",...)
end
function note_netsync_end(...)

return _hook_functions_helper("end",...)
end

function add_hook_functions(functions, precedence)
if type(functions) ~= "table" or type(precedence) ~= "number" then
return false, "Invalid type"
end
if hook_functions[precedence] then
return false, "Precedence already taken"
end

local unknown_items = ""
local warning = nil
local is_member =
function (s,t)

for k,v in pairs(t) do if s == v then return true end end
return false

end

for n,f in pairs(functions) do
if type(n) == "string" then

if not is_member(n, supported_items) then
if unknown_items ~= "" then
unknown_items = unknown_items .. ","
end
unknown_items = unknown_items .. n

end
if type(f) ~= "function" then

return false, "Value for functions item "..n.." isn’t a function"
end

else
warning = "Non-string item keys found in functions table"

end
end

if warning == nil and unknown_items ~= "" then

Appendix A: Default hooks 265

warning = "Unknown item(s) " .. unknown_items .. " in functions table"
end

hook_functions[precedence] = functions
return true, warning

end
function push_hook_functions(functions)

local n = table.maxn(hook_functions) + 1
return add_hook_functions(functions, n)

end

-- Kept for backward compatibility
function add_netsync_notifier(notifier, precedence)

return add_hook_functions(notifier, precedence)
end
function push_netsync_notifier(notifier)

return push_hook_functions(notifier)
end

end

266 monotone documentation

General Index 267

General Index

A
accept_testresult_change (old_results,

new_results) . 165
alias_command(original, alias) 170
attr_functions [attribute] (filename, value)

. 168
attr_init_functions [attribute] (filename)

. 168

D
drop . 84

E
edit_comment (commentary, user_log_message)

. 160
existonpath(possible_command) 170
expand_date (str) . 167
expand_selector (str) . 167
external_diff (file_path, old_data, new_data,

is_binary, diff_args, old_rev, new_rev)

. 166

G
get_author (branchname, keypair_id) 159
get_branch_key (branchname) 159
get_confdir() . 170
get_default_command_options(command) 159
get_encloser_pattern (file_path) 166
get_mtn_command(host) . 164
get_netsync_connect_command (uri, args)

. 162
get_netsync_key(server, include, exclude)

. 159
get_netsync_read_permitted (branch,

identity) . 161
get_netsync_write_permitted (identity) . . 162
get_ostype() . 170
get_passphrase (keypair_id) 159
get_preferred_merge3_command(tbl) 167
get_revision_cert_trust (signers, id, name,

val) . 164
guess_binary_file_contents(filespec) 170

H
hook_wrapper (func_name, ...) 169

I
ignore_branch (branchname) 161
ignore_file (filename) . 161

include(scriptfile) . 170
includedir(scriptpath) . 170
includedirpattern(scriptpath, pattern) . . 170
interactive file . 83
is_executable(filespec) 170

K
kill(pid [, signal]) . 170

M
make_executable(filespec) 171
match(glob, string) . 171
merge3 (ancestor_path, left_path, right_path,

merged_path, ancestor_text, left_text,

right_text) . 167
mkstemp(template) . 171
mtn --branch=branchname checkout directory

. 80
mtn --branch=branchname co directory 80
mtn [--bookkeep-only] drop pathname... 85
mtn [--bookkeep-only] mv src dst 86
mtn [--bookkeep-only] mv src1 ... dst/ 86
mtn [--bookkeep-only] rename src dst 86
mtn [--bookkeep-only] rename src1 ... dst/

. 86
mtn [--no-respect-ignore] mkdir directory...

. 85
mtn add [--recursive | -R]

[--no-respect-ignore] --unknown

[pathname...] . 85
mtn add [--recursive | -R]

[--no-respect-ignore] pathname... 85
mtn annotate [--revision=id] [--revs-only]

file . 94
mtn annotate file . 94
mtn approve id . 101
mtn automate ancestors rev1 [rev2 [...]]

. 108
mtn automate ancestry_difference new [old1

[old2 [...]]] . 112
mtn automate branches . 113
mtn automate cert revision name value 145
mtn automate certs id . 125
mtn automate children rev 109
mtn automate common_ancestors rev1 [rev2

[...]] . 108
mtn automate content_diff [--revision=id1

[--revision=id2]] [files ...] 135
mtn automate descendents rev1 [rev2 [...]]

. 109
mtn automate drop_attribute path [key] . . . 135

268 monotone documentation

mtn automate drop_db_variables domain [name]

. 144
mtn automate erase_ancestors [rev1 [rev2

[...]]] . 111
mtn automate file_merge left-rid left-path

right-rid right-path 137
mtn automate get_attributes path 133
mtn automate get_base_revision_id 130
mtn automate get_content_changed id file

. 142
mtn automate get_corresponding_path source_id

file target_id . 142
mtn automate get_current_revision [--exclude

excl] [--depth=depth] [path ...] 129
mtn automate get_current_revision_id 130
mtn automate get_db_variables [domain] . . . 143
mtn automate get_file id 136
mtn automate get_file_of filename

[--revision=id] . 137
mtn automate get_manifest_of 131
mtn automate get_manifest_of revid 131
mtn automate get_option option 138
mtn automate get_revision id 128
mtn automate get_workspace_root 151
mtn automate graph . 110
mtn automate heads [branch] 107
mtn automate identify path 115
mtn automate interface_version 107
mtn automate inventory [‘options...’]

[files...] . 116
mtn automate keys . 138
mtn automate leaves . 112
mtn automate lua function_name

[function_args...] . 152
mtn automate packet_for_certs id 139
mtn automate packet_for_fdata id 102, 141
mtn automate packet_for_fdelta from-id to-id

. 141
mtn automate packet_for_fdelta id1 id2 . . . 102
mtn automate packet_for_rdata id 102, 139
mtn automate packets_for_certs id 102
mtn automate parents rev 109
mtn automate put_file [base-id] contents

. 144
mtn automate put_revision revision-data . . 145
mtn automate read_packets packet-data 152
mtn automate roots . 113
mtn automate select selector 115
mtn automate set_attribute path key value

. 135
mtn automate set_db_variable domain name

value . 143
mtn automate show_conflicts [--branch BRANCH]

[left_rev right_rev] 146
mtn automate stdio . 126
mtn automate tags [branch_pattern] 114
mtn automate toposort [rev1 [rev2 [...]]]

. 111

mtn cat --revision=id path 80
mtn cat path . 80
mtn cert id certname . 101
mtn cert id certname certval 101
mtn checkout --revision=id directory 80
mtn ci . 86
mtn ci --message-file=logfile 86
mtn ci --message-file=logfile pathname...

. 86
mtn ci --message=logmsg

[--message=logmsg...] 86
mtn ci --message=logmsg

[--message=logmsg...] pathname... 86
mtn ci pathname... 86
mtn clone --branch=branchname address

directory . 80
mtn co --revision=id directory 80
mtn comment id . 101
mtn comment id comment . 101
mtn commit . 86
mtn commit --message-file=logfile 86
mtn commit --message-file=logfile

pathname... 86
mtn commit --message=logmsg

[--message=logmsg...] 86
mtn commit --message=logmsg

[--message=logmsg...] pathname... 86
mtn commit pathname... 86
mtn complete [--brief] key partial-id 94
mtn complete [--brief] revision partial-id

. 94
mtn complete file partial-id 94
mtn conflicts --conflicts-file=file

resolve_first resolution 83
mtn conflicts --conflicts-file=file

resolve_first_left resolution 83
mtn conflicts --conflicts-file=file

resolve_first_right resolution 83
mtn conflicts --conflicts-file=file

show_first . 83
mtn conflicts --conflicts-file=file

show_remaining . 83
mtn conflicts --conflicts-file=file store

left_rev_id right_rev_id 83
mtn conflicts clean . 83
mtn cvs_import pathname . 154
mtn db check --db=dbfile 103
mtn db dump --db=dbfile . 103
mtn db execute sql-statement 106
mtn db info --db=dbfile . 103
mtn db init --db=dbfile . 103
mtn db kill_branch_certs_locally branch . . 106
mtn db kill_rev_locally id 105
mtn db kill_tag_locally tag 106
mtn db load --db=dbfile . 103
mtn db migrate --db=dbfile 103
mtn db version --db=dbfile 103
mtn diff --context [--no-show-encloser] . . . 94

General Index 269

mtn diff --external [--diff-args=argstring]

. 94
mtn diff --revision=id . 94
mtn diff --revision=id pathname... 94
mtn diff --revision=id1 --revision=id2 94
mtn diff --revision=id1 --revision=id2

pathname... 94
mtn diff [--unified] [--no-show-encloser]

. 94
mtn diff pathname... 94
mtn disapprove id . 81
mtn drop --missing . 85
mtn dropkey keyid . 99
mtn explicit_merge id id destbranch 82
mtn genkey keyid . 99
mtn heads --branch=branchname 81
mtn import --branch=branch

[--message=message] [--dry-run] dir . . . 82
mtn import --revision=revision

[--message=message] [--dry-run] dir . . . 82
mtn list branches . 97
mtn list certs id . 96
mtn list changed . 98
mtn list changed pathname... 98
mtn list duplicates [--revision=id] 96
mtn list ignored . 98
mtn list ignored pathname... 98
mtn list keys . 97
mtn list keys pattern . 97
mtn list known . 97
mtn list known pathname... 97
mtn list missing . 98
mtn list missing pathname... 98
mtn list tags . 97
mtn list unknown . 97
mtn list unknown pathname... 97
mtn list vars . 97
mtn list vars domain . 97
mtn log . 93
mtn log [--last=n] [--next=n] [--from=id

[...]] [--to=id [...]] [--brief]

[--no-merges] [--no-files] [--diffs]

[file [...]] . 93
mtn ls branches . 97
mtn ls certs id . 96
mtn ls changed . 98
mtn ls changed pathname... 98
mtn ls duplicates [--revision=id] 96
mtn ls ignored . 98
mtn ls ignored pathname... 98
mtn ls keys . 97
mtn ls keys pattern . 97
mtn ls known . 97
mtn ls known pathname... 97
mtn ls missing . 98
mtn ls missing pathname... 98
mtn ls tags . 97
mtn ls unknown . 97

mtn ls unknown pathname... 97
mtn ls vars . 97
mtn ls vars domain . 97
mtn merge [--branch=branchname] 81
mtn merge_into_dir sourcebranch destbranch

dir . 82
mtn passphrase id . 99
mtn pivot_root [--bookkeep-only] pivot_root

new_root put_old . 89
mtn pluck --revision=from --revision=to . . . 88
mtn pluck --revision=to . 88
mtn privkey keyid . 102
mtn propagate sourcebranch destbranch 81
mtn pubkey keyid . 102
mtn pull [--set-default] [uri-or-address]

[glob [...] [--exclude=exclude-glob]]]

. 91
mtn push [--set-default] [uri-or-address]

[glob [...] [--exclude=exclude-glob]]]

. 91
mtn rcs_import filename... 154
mtn read . 102
mtn read file1 file2... 102
mtn refresh_inodeprints . 89
mtn revert --missing pathname... 88
mtn revert pathname... 88
mtn serve --stdio [--no-transport-auth] . . . 91
mtn serve [--bind=[address][:port]] 91
mtn set domain name value 103
mtn setup [directory] . 85
mtn show_conflicts rev rev 98
mtn ssh_agent_add . 99
mtn ssh_agent_export filename 100
mtn status . 93
mtn status pathname... 93
mtn suspend id . 101
mtn sync [--set-default] [uri-or-address]

[glob [...] [--exclude=exclude-glob]]]

. 91
mtn tag id tagname . 101
mtn testresult id 0 . 101
mtn testresult id 1 . 101
mtn trusted id certname certval signers . . . 99
mtn unset domain name . 103
mtn update . 88
mtn update --revision=revision 88
mtn_automate(...) . 171

N
note_commit (new_id, revision, certs) 156
note_mtn_startup (...) . 158
note_netsync_cert_received (rev_id, key,

name, value, session_id) 157
note_netsync_cert_sent (rev_id, key, name,

value, session_id) . 157
note_netsync_end (session_id, status, 157

270 monotone documentation

note_netsync_pubkey_received (keyname,

session_id) . 157
note_netsync_pubkey_sent (keyname,

session_id) . 157
note_netsync_revision_received (new_id,

revision, certs, session_id) 157
note_netsync_revision_sent (rev_id,

revision, certs, session_id) 157
note_netsync_start (session_id, my_role,

sync_type, . 156

P
parse_basic_io(data) . 171
persist_phrase_ok () . 160

R
regex.search(regexp, string) 172
register_command(name, params, abstract,

description, function) 172
rename filename . 84

S
server_request_sync(what, address, include,

exclude) . 172
sleep(seconds) . 172
spawn(executable [, args ...]) 172
spawn_pipe(executable [, args ...]) 172
spawn_redirected(infile, outfile, errfile,

executable [, args ...]) 172

U
use_inodeprints () . 160
use_transport_auth (uri) 164
user file . 84

V
validate_commit_message (message,

revision_text, branchname) 169

W
wait(pid) . 172

	Concepts
	Versions of files
	Versions of trees
	Historical records
	Certificates
	Storage and workflow
	Forks and merges
	Branches
	Branch Names

	Tutorial
	Issues
	Standard Options
	Revision Selectors

	The Fictional Project
	Creating a Database
	Generating Keys
	Starting a New Project
	Adding Files
	Committing Work
	Basic Network Service
	Synchronising Databases
	Making Changes
	Dealing with a Fork
	Branching and Merging
	Network Service Revisited

	Advanced Uses
	Other Transports
	Selectors
	Restrictions
	Scripting
	Inodeprints
	Merge Conflicts
	Conflict Types

	Workspace Collisions
	Quality Assurance
	Vars
	Reserved Files
	Reserved Certs
	Naming Conventions
	File Attributes
	Merging
	Migrating and Dumping
	Importing from CVS
	Using packets

	CVS Phrasebook
	Command Reference
	Tree
	Conflicts

	Workspace
	Network
	Informative
	Key and Cert Trust
	Certificate
	Packet I/O
	Database
	Automation
	RCS

	Hook Reference
	Hooks
	Event Notifications and Triggers
	User Defaults
	Netsync Permission Hooks
	Netsync Transport Hooks
	Trust Evaluation Hooks
	External Diff Tools
	External Merge Tools
	Selector Expansion
	Attribute Handling
	Validation Hooks
	Meta Hooks

	Additional Lua Functions

	Special Topics
	Internationalization
	Hash Integrity
	Rebuilding ancestry
	Mark-Merge
	Regular Expression Syntax
	Regexp Syntax Summary
	Regexp Details

	Default hooks
	General Index

